Abstract:
An implantable medical device includes a low-power circuit, a high-power circuit, and a dual-cell power source. The power source is coupled to a dual-transformer such that each cell is connected to only one of the transformers. Each transformer includes multiple windings and each of the windings is coupled to a capacitor, and the capacitors are all connected in a series configuration. The low power circuit is coupled to the power source and issues a control signal to control the delivery of charge from the power source to the plurality of capacitors through the first and second transformers.
Abstract:
An implantable medical device includes a low-power circuit and a multi-cell power source. The cells of the power source are coupled in a parallel configuration. The implantable medical device includes both a low power circuit that is selectively coupled between the first and second cells and a high power output circuit that is directly coupled to the first and second cells in a parallel configuration. An isolation circuit is coupled to the first cell, the second cell and the low power circuit to maintain a current isolation between the first cell and the second cell at least during delivery of current having a large magnitude to the high power output circuit.
Abstract:
An implantable medical device includes a low-power circuit, a high-power circuit, and a dual-cell power source. The power source is coupled to a transformer having first and second primary windings, each of which is selectively coupled to the power source and a plurality of secondary windings that are magnetically coupled to the first and second primary windings. The plurality of secondary windings are interlaced along a length of each of the secondary windings. Each of the plurality of secondary transformer windings is coupled to a capacitor, and the capacitors are all connected in a series configuration. The low power circuit is coupled to the power source and issues a control signal to control the delivery of charge from the power source to the plurality of capacitors through the first and second transformers.
Abstract:
An implantable medical device includes a low-power circuit and a multi-cell power source. The cells of the power source are coupled in a parallel configuration. The implantable medical device includes both a low power circuit that is selectively coupled between the first and second cells and a high power output circuit that is directly coupled to the first and second cells in a parallel configuration. An isolation circuit is coupled to the first cell, the second cell and the low power circuit to maintain a current isolation between the first cell and the second cell at least during delivery currents having a large magnitude that are delivered to the high power output circuit.
Abstract:
An implantable medical device includes a low-power circuit and a multi-cell power source. The cells of the power source are coupled to a transformer in a parallel configuration. The transformer includes multiple secondary windings and each of the windings is coupled to a capacitor that stores energy for delivery of a therapy to a patient. In accordance with embodiments of this disclosure, the low power circuit is configured to control simultaneous delivery of energy from each of the cells to a plurality of capacitors through the transformer.