Abstract:
Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.
Abstract:
Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.
Abstract:
Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.
Abstract:
Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.
Abstract:
Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.
Abstract:
Magnetic orientation-independent magnetically actuated switches may be made by producing an outer cylinder and an actuator cylinder from ferromagnetic sheets and non-ferromagnetic sheets in alternating order. A first ferromagnetic body is attached to an end of the outer cylinder. The actuator cylinder is positioned within a first bore of the outer cylinder, the actuator pin is positioned within a second bore of the actuator cylinder and a third bore of the first ferromagnetic body with a portion of the actuator pin extending beyond the third bore of the first ferromagnetic body. A second ferromagnetic body is attached to the portion of the actuator pin, thus forming the magnetic orientation-independent magnetically operated switch.
Abstract:
Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.
Abstract:
Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.