Determination of therapy electrode locations relative to oscillatory sources within patient

    公开(公告)号:US11045652B2

    公开(公告)日:2021-06-29

    申请号:US16395320

    申请日:2019-04-26

    Abstract: Techniques are described determining electrodes that are proximate or distal to location of an oscillatory signal source in a patient based on current source densities (CSDs). Processing circuitry may determine, for one or more electrodes of a plurality of electrodes, respective time-varying measurements of CSDs, aggregate, for the one or more electrodes of the plurality electrodes, the respective time-varying measurements of the CSDs to generate respective average level values for the one or more electrodes of the plurality of electrodes, determine, for one or more electrodes of the plurality of electrodes, respective phase-magnitude representations of the time-varying measurements of the CSDs. The respective phase-magnitude representations are indicative of respective magnitudes and phases of a particular frequency component of respective time-varying measurements of the CSDs. The particular frequency component is a frequency component having a largest transform coefficient in a time-varying measurement of a CSD having a largest average level value.

    Probabilistic entropy for detection of periodic signal artifacts

    公开(公告)号:US11033742B2

    公开(公告)日:2021-06-15

    申请号:US16392129

    申请日:2019-04-23

    Abstract: Techniques are disclosed for using probabilistic entropy to select electrodes with fewer artifacts for controlling adaptive electrical neurostimulation. In one example, a plurality of electrodes sense bioelectrical signals of a brain of a patient. Processing circuitry determines, for each bioelectrical signal sensed at a respective electrode of the plurality of electrodes, a probabilistic entropy value of the bioelectrical signal. The processing circuitry compares each of the respective probabilistic entropy values of the bioelectrical signal to respective entropy threshold values and selects, based on the comparisons, a subset of electrodes of the plurality of electrodes. The processing circuitry controls, based on the bioelectrical signals sensed via respective electrodes of the subset of electrodes and excluding the bioelectrical signals of the plurality of bioelectrical signals sensed via respective electrodes not in the subset of electrodes, delivery of electrical stimulation therapy to the patient.

    DETERMINATION OF THERAPY ELECTRODE LOCATIONS RELATIVE TO OSCILLATORY SOURCES WITHIN PATIENT

    公开(公告)号:US20200338353A1

    公开(公告)日:2020-10-29

    申请号:US16395320

    申请日:2019-04-26

    Abstract: Techniques are described determining electrodes that are proximate or distal to location of an oscillatory signal source in a patient based on current source densities (CSDs). Processing circuitry may determine, for one or more electrodes of a plurality of electrodes, respective time-varying measurements of CSDs, aggregate, for the one or more electrodes of the plurality electrodes, the respective time-varying measurements of the CSDs to generate respective average level values for the one or more electrodes of the plurality of electrodes, determine, for one or more electrodes of the plurality of electrodes, respective phase-magnitude representations of the time-varying measurements of the CSDs. The respective phase-magnitude representations are indicative of respective magnitudes and phases of a particular frequency component of respective time-varying measurements of the CSDs. The particular frequency component is a frequency component having a largest transform coefficient in a time-varying measurement of a CSD having a largest average level value.

    NEURAL OSCILLATORY SIGNAL SOURCE LOCATION DETECTION

    公开(公告)号:US20200338351A1

    公开(公告)日:2020-10-29

    申请号:US16395308

    申请日:2019-04-26

    Abstract: Techniques are described to determine a location of at least one oscillatory signal source in a patient. Processing circuitry may determine expected electrical signal levels based on a hypothetical location of the at least one oscillatory signal source. Processing circuitry may determine the electrical signal levels and determine an error value based on the expected electrical signal levels and the determined electrical signal levels. Processing circuitry may adjust the hypothetical location of the at least one oscillatory signal source until the error value is less than or equal to a threshold value, including the example where the error value is minimized.

    PROBABILISTIC ENTROPY FOR DETECTION OF PERIODIC SIGNAL ARTIFACTS

    公开(公告)号:US20200338350A1

    公开(公告)日:2020-10-29

    申请号:US16392129

    申请日:2019-04-23

    Abstract: Techniques are disclosed for using probabilistic entropy to select electrodes with fewer artifacts for controlling adaptive electrical neurostimulation. In one example, a plurality of electrodes sense bioelectrical signals of a brain of a patient. Processing circuitry determines, for each bioelectrical signal sensed at a respective electrode of the plurality of electrodes, a probabilistic entropy value of the bioelectrical signal. The processing circuitry compares each of the respective probabilistic entropy values of the bioelectrical signal to respective entropy threshold values and selects, based on the comparisons, a subset of electrodes of the plurality of electrodes. The processing circuitry controls, based on the bioelectrical signals sensed via respective electrodes of the subset of electrodes and excluding the bioelectrical signals of the plurality of bioelectrical signals sensed via respective electrodes not in the subset of electrodes, delivery of electrical stimulation therapy to the patient.

Patent Agency Ranking