摘要:
In an implementation, energy reaching the lower surface of a photoresist may be redirected back into the photoresist material. This may be done by, for example, reflecting and/or fluorescing the energy from a hardmask provided on the wafer surface back into the photoresist.
摘要:
In an implementation, energy reaching the lower surface of a photoresist may be redirected back into the photoresist material. This may be done by, for example, reflecting and/or fluorescing the energy from a hardmask provided on the wafer surface back into the photoresist.
摘要:
In an implementation, energy reaching the lower surface of a photoresist may be redirected back into the photoresist material. This may be done by, for example, reflecting and/or fluorescing the energy from a hardmask provided on the wafer surface back into the photoresist.
摘要:
According to a first embodiment of the invention, a dual cathode electrode for generating EUV light is disclosed. The dual cathode electrode may include a first outer cathode, a second inner cathode, and an anode disposed between the inner and outer cathodes. The dual cathode electrode also includes a plasma disposed in between the cathodes that emits EUV photons when it is excited by an arc between the anode and the cathodes. According to a second embodiment of the invention, several Dense Plasma Focus (DPF) electrodes are placed along a circle. The DPF electrodes, when activated, will emit electron photons from the circle in which they are placed thereby avoiding obscuration used to protect UV mirrors against debris.
摘要:
According to an embodiment of the invention, extreme ultraviolet (EUV) photolithography is performed using lobster eye transmission optics. A light source, such as a source plasma, is located at the center of a circle. Several mirror segments are arranged on an arc of the circle. The mirror segments may be arranged so that the light generated by the light source is collimated after being reflected. The light source may be a source plasma capable of generating EUV photons.
摘要:
According to an embodiment of the invention, an adjustable EUV light source may be used for photolithography. The EUV light source, such as an electrode, is mounted in an adjustable housing. The housing can be adjusted to change the distance between the light source and focusing mirrors, which in turn changes the partial coherence value of the system. The partial coherence value can be changed to print different types of semiconductor features.
摘要:
According to an embodiment of the invention, an adjustable EUV light source may be used for photolithography. The EUV light source, such as an electrode, is mounted in an adjustable housing. The housing can be adjusted to change the distance between the light source and focusing mirrors, which in turn changes the partial coherence value of the system. The partial coherence value can be changed to print different types of semiconductor features.
摘要:
According to an embodiment of the invention, an adjustable EUV light source may be used for photolithography. The EUV light source, such as an electrode, is mounted in an adjustable housing. The housing can be adjusted to change the distance between the light source and focusing mirrors, which in turn changes the partial coherence value of the system. The partial coherence value can be changed to print different types of semiconductor features.
摘要:
According to a first embodiment of the invention, a dual cathode electrode for generating EUV light is disclosed. The dual cathode electrode may include a first outer cathode, a second inner cathode, and an anode disposed between the inner and outer cathodes. The dual cathode electrode also includes a plasma disposed in between the cathodes that emits EUV photons when it is excited by an arc between the anode and the cathodes. According to a second embodiment of the invention, several Dense Plasma Focus (DPF) electrodes are placed along a circle. The DPF electrodes, when activated, will emit electron photons from the circle in which they are placed thereby avoiding obscuration used to protect UV mirrors against debris.
摘要:
According to an embodiment of the invention, an adjustable EUV light source may be used for photolithography. The EUV light source, such as an electrode, is mounted in an adjustable housing. The housing can be adjusted to change the distance between the light source and focusing mirrors, which in turn changes the partial coherence value of the system. The partial coherence value can be changed to print different types of semiconductor features.