摘要:
An IMD may transition to an MRI mode automatically in response to detecting one or more conditions indicative of the presence of a strong magnetic field. Large static magnetic fields, such as those produced by an MRI device, may interact with the blood of a patient as it flows through the magnetic field to produce a voltage, a phenomenon referred to as the magnetohydrodynamic (MHD) effect. The voltage produced by the MHD effect is proportional to the strength of the magnetic field. As such, the voltage produced by blood flow in the strong magnetic field of an MRI device may result in a change in a characteristic of an electrogram (EGM). The IMD may detect the change in the characteristic of the EGM caused by the MHD effect and transition to operation in the MRI mode in response to at least the change in the EGM.
摘要:
An IMD may transition to an MRI mode automatically in response to detecting one or more conditions indicative of the presence of a strong magnetic field. Large static magnetic fields, such as those produced by an MRI device, may interact with the blood of a patient as it flows through the magnetic field to produce a voltage, a phenomenon referred to as the magnetohydrodynamic (MHD) effect. The voltage produced by the MHD effect is proportional to the strength of the magnetic field. As such, the voltage produced by blood flow in the strong magnetic field of an MRI device may result in a change in a characteristic of an electrogram (EGM). The IMD may detect the change in the characteristic of the EGM caused by the MHD effect and transition to operation in the MRI mode in response to at least the change in the EGM.
摘要:
An IMD may transition to an MRI mode automatically in response to detecting one or more conditions indicative of the presence of a strong magnetic field. Large static magnetic fields, such as those produced by an MRI device, may interact with the blood of a patient as it flows through the magnetic field to produce a voltage, a phenomenon referred to as the magnetohydrodynamic (MHD) effect. The voltage produced by the MHD effect is proportional to the strength of the magnetic field. As such, the voltage produced by blood flow in the strong magnetic field of an MRI device may result in a change in a characteristic of an electrogram (EGM). The IMD may detect the change in the characteristic of the EGM caused by the MHD effect and transition to operation in the MRI mode in response to at least the change in the EGM.
摘要:
An IMD may transition to an MRI mode automatically in response to detecting one or more conditions indicative of the presence of a strong magnetic field. Large static magnetic fields, such as those produced by an MRI device, may interact with the blood of a patient as it flows through the magnetic field to produce a voltage, a phenomenon referred to as the magnetohydrodynamic (MHD) effect. The voltage produced by the MHD effect is proportional to the strength of the magnetic field. As such, the voltage produced by blood flow in the strong magnetic field of an MRI device may result in a change in a characteristic of an electrogram (EGM). The IMD may detect the change in the characteristic of the EGM caused by the MHD effect and transition to operation in the MRI mode in response to at least the change in the EGM.
摘要:
An implantable medical device (IMD) configures one or more operating parameters of the IMD based on a type of source of a disruptive energy field to which the IMD is exposed. The disruptive energy field may, in one example, include magnetic and/or radio frequency (RF) fields generated by an MRI scanner. In one aspect, the IMD may distinguish between different types of MRI scanners and select an exposure operating mode tailored to reduce the effects of the particular type of MRI scanner. In another aspect, the IMD may adjust one or more operating parameters that will be used when the IMD returns to a normal operating mode after exposure to the MRI scanner based on the type of MRI scanner to which the IMD is exposed.
摘要:
This disclosure describes techniques for configuring an IMD into the exposure operating mode. Prior to a medical procedure that generates a disruptive energy field, such as an MRI scan, an electronic prescription is configured to indicate that the IMD is authorized for the medical procedure that includes a disruptive energy field. The electronic prescription includes one or more designated bits within a storage element of the IMD. When the patient in which the IMD is implanted arrives for the medical procedure, a user (such as an MRI operator) interacts with a telemetry device to determine whether the electronic prescription is configured. Upon determining that the electronic prescription is configured, the IMD transitions into the exposure operating mode designed for operation in the disruptive energy field. In this manner, the electronic prescription confirms to the user that that the IMD has been checked for suitability for operation during the medical procedure.
摘要:
An IMD is selectively configurable to support a plurality of programming options for enabling and disabling an exposure operating mode of the device. In one example, the IMD may support at least two of a manual exposure mode programming option in which the exposure operating mode is manually enabled and manually disabled, an automatic exposure mode programming option in which the exposure operating mode is automatically enabled and automatically disabled, or a semi-automatic exposure mode programming option in which the exposure operating mode is either automatically enabled and manually disabled or manually enabled and automatically disabled. In this manner, the IMD may support more than one way for enabling and disabling the exposure operating mode to provide flexibility in the clinical workflows associated with programming the IMD into an exposure operating mode for a medical procedure, such as an MRI scan.
摘要:
An implantable medical device (IMD) configures one or more operating parameters of the IMD based on a type of source of a disruptive energy field to which the IMD is exposed. The disruptive energy field may, in one example, include magnetic and/or radio frequency (RF) fields generated by an MRI scanner. In one aspect, the IMD may distinguish between different types of MRI scanners and select an exposure operating mode tailored to reduce the effects of the particular type of MRI scanner. In another aspect, the IMD may adjust one or more operating parameters that will be used when the IMD returns to a normal operating mode after exposure to the MRI scanner based on the type of MRI scanner to which the IMD is exposed.
摘要:
An implantable medical device (IMD) automatically determines at least a portion of the parameters and, in some instances all of the parameters, of an exposure operating mode based on stored information regarding sensed physiological events or therapy provided over a predetermined period of time. The IMD may configure itself to operate in accordance with the automatically determined parameters of the exposure operating mode in response to detecting a disruptive energy field. Alternatively, the IMD may provide the automatically determined parameters of the exposure operating mode to a physician as suggested or recommended parameters for the exposure operating mode. In other instances, the automatically determined parameters may be compared to parameters received manually via telemetry and, if differences exist or occur, a physician or patient may be notified and/or the manual parameters may be overridden by the automatically determined parameters.
摘要:
An IMD is selectively configurable to support a plurality of programming options for enabling and disabling an exposure operating mode of the device. In one example, the IMD may support at least two of a manual exposure mode programming option in which the exposure operating mode is manually enabled and manually disabled, an automatic exposure mode programming option in which the exposure operating mode is automatically enabled and automatically disabled, or a semi-automatic exposure mode programming option in which the exposure operating mode is either automatically enabled and manually disabled or manually enabled and automatically disabled. In this manner, the IMD may support more than one way for enabling and disabling the exposure operating mode to provide flexibility in the clinical workflows associated with programming the IMD into an exposure operating mode for a medical procedure, such as an MRI scan.