摘要:
An optical signal processing apparatus has a diffraction grating element, first condenser lens, Faraday rotation elements, polarization beam splitter, λ/2 plate, second condenser lens, third condenser lens, and diffraction grating element. The magnitude of a magnetic field of each of the Faraday rotation elements is controlled on the basis of an externally input control signal. The rotation angle of the plane of polarization of signal light is set to 0 or λ/2 in accordance with the magnitude of the magnetic field. Each Faraday rotation element receives signal light having wavelengths λ1 to λ4, which has arrived from the first condenser lens, and outputs the signal light as a polarized light component in the first azimuth (parallel to the z-axis direction) or second azimuth (parallel to the y-axis direction).
摘要:
This invention provides an optical signal processing apparatus capable of size reduction. When signal light with multiple wavelengths &lgr;1 to &lgr;4 is collimated by and output from a fiber collimator, the signal light components with multiple wavelengths &lgr;1 to &lgr;4 are diffracted by a diffraction grating at diffraction angles corresponding to the wavelengths and separated for the respective wavelengths. The separated signal light components of the respective wavelengths are output to spatially different optical paths. The signal light components having the wavelengths &lgr;n are deflected at their optical paths by prisms to increase the optical path interval and then input to fiber collimators.
摘要:
An optical signal processor, capable of eliminating design change of lens optical systems, it is fabricating by selecting one or more optical waveguides, each having a mode field diameter such that a desired band width of the transmission characteristics of the whole optical signal processor with respect to the light beam are selected as the input and output optical waveguides. When one optical waveguide is selected, the selected optical waveguide is applied as a common optical waveguide corresponding to both input and output optical waveguides. When two optical waveguides are selected, one is applied to the input optical waveguide and the other is applied to the output optical waveguide.
摘要:
To provide an optical signal processor which can perform favorable optical signal processing even when there are environmental changes and the like. An optical signal processor 1 inputs light emitted from an end face of an optical fiber 11, subjects the inputted light to processing according to its wavelength, and outputs the processed light so as to make it incident on the end face of the optical fiber 11; and comprises optical systems 111 to 113, a diffraction grating device 120, reflecting mirrors 131 to 133, an optical path turning part 140, and a monitor part 150. The optical path turning part 140 transmits therethrough a part of the incident light and reflects at least a part of the remnant. The optical system 113 monitors the light transmitted through the optical path turning part 140.
摘要:
The present invention relates to an optical multiplexer/demultiplexer. In the multiplexer/demultiplexer, a first grating receives to diffract a multi-wavelength light signal from a first port into light signals with different wavelengths. A second grating diffracts these light signals towards second ports. The second grating is disposed parallel with the first grating. The second grating has the same grating interval and grating direction as the first grating. The light signals diffracted by the second grating travel parallel with each other. Therefore, the light signals can efficiently enter the second ports without sophisticated lens design and adjustment of the optical system.
摘要:
Light output from the distal end of an optical fiber collimator is input to a first diffraction grating formed on a first surface of a transparent member, and diffracted by the first diffraction grating at angles corresponding to wavelengths, and thus wavelength-branched. The light components of the respective wavelengths branched by the first diffraction grating and having propagated through the transparent member, are diffracted by a second diffraction grating formed on a second surface of the transparent member, and output from the transparent member. Each of the light components of the respective wavelengths, which are diffracted by the second diffraction grating and output from the transparent member, is input to the distal end of a corresponding one of optical fiber collimators, focused, and propagates through the optical fiber.
摘要:
The present invention relates to an optical signal processor which can perform favorable optical signal processing even when there are environmental changes and the like. The optical signal processor inputs light emitted from an end face of an optical fiber, subjects the inputted light to processing according to its wavelength, and outputs the processed light so as to make it incident on the end face of the optical fiber; and comprises optical systems, a diffraction grating device, mirror reflectors, an optical path turning part, and a monitor part. The optical path turning part transmits therethrough a part of the incident light and reflects at least a part of the remnant. The optical system monitors the light transmitted through the optical path turning part.
摘要:
The present invention is related to a method of fabricating an optical signal processor capable of eliminating design change of lens optical systems and so on. The optical signal processor includes input and output optical waveguides, and further includes a first lens optical system, a spatial wavelength-dividing element, a second lens optical system, and a spatial optical modulator, respectively arranged on an optical path between the input and output optical waveguides. For fabricating the optical signal processor, one or more optical waveguides each having a mode field diameter such that a desired band width of the transmission characteristics of the whole optical signal processor with respect to the light beam are selected as the input and output optical waveguides. When one optical waveguide is selected, the selected optical waveguide is applied as a common optical waveguide corresponding to both input and output optical waveguides. On the other hand, when two optical waveguides are selected, one is applied to the input optical waveguide and the other is applied to the output optical waveguide.
摘要:
The present invention relates a variable optical multiplexer/demultiplexer which can be made smaller and can restrain characteristics from deteriorating. The optical multiplexer/demultiplexer comprises a first optical system, a wavelength branching device, a second optical system, and an optical path changing part. The optical multiplexer/demultiplexer has a plurality of input/output ports, and the first optical system, the wavelength branching device, and the second optical system are disposed between the ports and the optical path changing part. When light is fed into any of the ports, individual wavelength components included in the light are outputted from any of the ports. The optical path changing part inputs the wavelength components condensed by the second optical system, and output the wavelength components to an output optical path which is parallel to but not on the same line as the input optical paths of the wavelength components.
摘要:
An optical system 111 collimates wavelength components of wavelengths λ1-λ3 emerging from an end face of optical fiber 11, a diffraction grating 121 separates them by wavelength, and an optical system 112 condenses them. The component of the wavelength λ1 is focused at a focus position by the optical system 112 and diverges after the focus position. Then the component of the wavelength λ1 is collimated by an optical system 113, travels via a diffraction grating 122, and is condensed by an optical system 114 to enter an end face of optical fiber 22. The component of the wavelengths λ2, λ3 condensed by the optical system 112 are reflected by reflecting portions 132, 133 set at their respective focus positions, are collimated by the optical system 112, travel via the diffraction grating 121, and are condensed by the optical system 111 to enter an end face of optical fiber.