ENSEMBLE MODEL FOR IMAGE RECOGNITION PROCESSING

    公开(公告)号:US20190180146A1

    公开(公告)日:2019-06-13

    申请号:US15840823

    申请日:2017-12-13

    Abstract: Non-limiting examples described herein relate to ensemble model processing for image recognition that improves precision and recall for image recognition processing as compared with existing solutions. An exemplary ensemble model is configured enhance image recognition processing through aggregate data modeling processing that evaluates image recognition prediction results obtained through processing that comprises: nearest neighbor visual search analysis, categorical image classification analysis and/or categorical instance retrieval analysis. An exemplary ensemble model is scalable, where new segments/categories can be bootstrapped to build deeper learning models and achieve high precision image recognition, while the cost of implementation (including from a bandwidth and resource standpoint) is lower than what is currently available across the industry today. Processing described herein, including implementation of an exemplary ensemble data model, may be exposed as a web service that is standalone or integrated within other applications/services to enhance processing efficiency and productivity applications/services such as productivity applications/services.

    Ensemble model for image recognition processing

    公开(公告)号:US10607118B2

    公开(公告)日:2020-03-31

    申请号:US15840823

    申请日:2017-12-13

    Abstract: Non-limiting examples described herein relate to ensemble model processing for image recognition that improves precision and recall for image recognition processing as compared with existing solutions. An exemplary ensemble model is configured enhance image recognition processing through aggregate data modeling processing that evaluates image recognition prediction results obtained through processing that comprises: nearest neighbor visual search analysis, categorical image classification analysis and/or categorical instance retrieval analysis. An exemplary ensemble model is scalable, where new segments/categories can be bootstrapped to build deeper learning models and achieve high precision image recognition, while the cost of implementation (including from a bandwidth and resource standpoint) is lower than what is currently available across the industry today. Processing described herein, including implementation of an exemplary ensemble data model, may be exposed as a web service that is standalone or integrated within other applications/services to enhance processing efficiency and productivity applications/services such as productivity applications/services.

    Ensemble model for image recognition processing

    公开(公告)号:US10997468B2

    公开(公告)日:2021-05-04

    申请号:US16799528

    申请日:2020-02-24

    Abstract: Non-limiting examples described herein relate to ensemble model processing for image recognition that improves precision and recall for image recognition processing as compared with existing solutions. An exemplary ensemble model is configured enhance image recognition processing through aggregate data modeling processing that evaluates image recognition prediction results obtained through processing that comprises: nearest neighbor visual search analysis, categorical image classification analysis and/or categorical instance retrieval analysis. An exemplary ensemble model is scalable, where new segments/categories can be bootstrapped to build deeper learning models and achieve high precision image recognition, while the cost of implementation (including from a bandwidth and resource standpoint) is lower than what is currently available across the industry today. Processing described herein, including implementation of an exemplary ensemble data model, may be exposed as a web service that is standalone or integrated within other applications/services to enhance processing efficiency and productivity applications/services such as productivity applications/services.

Patent Agency Ranking