摘要:
The present invention provides a method and circuit for controlling the flow of current through a load. In a preferred embodiment, an oscillator generates a pulse signal of constant frequency. A pulse width modulator adjusts the duty cycle of the pulse signal in response to a dimming level signal input indicative of the desired level of current flow through the load. A converter receives the pulse signal as an input and converts it into an AC signal, the frequency of which follows the frequency of the pulse signal and the symmetry of which varies with the duty cycle of the pulse signal. The load is connected into a resonant circuit tuned such that a change in the symmetry of the AC signal changes the level of current flowing through the load.
摘要:
A resonant circuit includes a global feedback path from a load to diode elements and an LC notch filter at an input terminal to block energy from the feedback signal going back out on the line. The LC notch filter is tuned to about the frequency of the feedback signal.
摘要:
A ballast includes a hot restart circuit for hot restart of a HID lamp. In one embodiment, the hot restart circuit includes inductively coupled first and second inductive elements coupled end to end. A first capacitor has a first terminal coupled to a point between the first and second inductive elements and a second terminal coupled to a switching element. When the switching element transitions to a conductive state, a voltage pulse is generated on the second inductive element and the corresponding pulse on the first inductive element is sufficient to achieve hot restart of the lamp. In one embodiment, the first capacitor and the second inductive provide a parallel resonant LC circuit. The resultant signal on the second inductive element increases a voltage on the first inductive element for hot restart of the lamp.
摘要:
A ballast circuit for energizing a lamp comprises a circuit for limiting and/or regulating signal levels to the lamp. In one embodiment, the ballast comprises a control circuit which regulates the lamp current to a predetermined level such that the ballast can drive lamps having a predetermined diameter, which determines the operating current, and having a length that can vary, which determines the voltage drop across the lamp. In another embodiment, the ballast comprises a threshold circuit for limiting a load current prior to striking the lamp as well as after the lamp conducts current.
摘要:
An improved ballast circuit for use with a compact fluorescent lamp includes an EMI filter, a rectifier and a voltage amplification stage, an active resonant circuit, a dimming circuit, and a power factor correction stage which is connected in parallel to a lamp load. In one embodiment, the ballast circuit operates in cooperation with a three way switch to adjust the light output of the lamp to three discrete levels corresponding to each setting of the three way switch. In another embodiment the ballast circuit includes a feedback capacitor which provides a feedback path for a portion of the high frequency current to the rectifier and voltage amplification stage. In still another embodiment, the ballast circuit is configured to accept input from a triac or a SCR device. In all of the embodiments, the dimming circuit works with the active resonant circuit to vary the amount of power that is supplied to the lamp load. Further, the ballast circuit embodiments automatically limit the voltage buildup in the lamp filaments at the end of their lifetime to prevent catastrophic failure of fluorescent and compact fluorescent lamps.
摘要:
A circuit for driving a gas discharge lamp load and including an EMI and transient supply filter coupled to an input source, a rectifier coupled to the filter, a power inverter coupled to the rectifier, a load including a transformer coupled to the power inverter, and a control circuit coupled to the power inverter and the load. A feedback circuit couples the load transformer to the AC side of the rectifier to create a path for transferring a feedback voltage over the rectifier to cause the rectifier to conduct current over a substantive portion of each cycle of the AC input voltage.
摘要:
A circuit for dimmably driving fluorescent lamps (102, 104, 106) from a DC supply voltage includes: input nodes (174, 176) having input capacitors (184, 186) connected therebetween; a half-bridge transistor inverter (178, 180) connected between the input terminals; a series-resonant LC oscillator (196, 198) coupled in series between the half-bridge transistors and the input capacitors; an output transformer (212) having a primary winding (214) connected in series with the LC inductor (196) and in parallel with the LC capacitor (198) and a secondary winding (216) for connection to the lamp load; and first and second voltage clamp diodes (215A, 215B) connected between an intermediate point on the primary winding and the input nodes respectively. The voltage clamp diodes, in conjunction with the input capacitors, provide significant enhancement in reduction of power transferred to the lamps when the DC supply voltage is reduced, allowing lamp dimming to be simply and efficiently effected by reduction of the DC supply voltage.
摘要:
A load-switch voltage control circuit includes a power control circuit for controlling a switching element that stabilizes the voltage to a load. The power control circuit determines intervals of conduction for the switching element, that connects a control impedance to the load, for stabilizing the voltage across the load.
摘要:
A resonant circuit includes a feedback path for a feedback signal extending from a load terminal to an input terminal so that a potential of the load substantially tracks a potential of the input terminals. A resonant circuit extends from a load to a line terminal so that a potential of the load substantially tracks a potential of the line terminals. A resonant circuit includes a split inductor so that when the load increases so does the equivalent resonant inductance.
摘要:
An electronic circuit providing independent operation and application of instant start voltages to each of a plurality of lamps. In a first embodiment, a circuit includes inductively coupled first and second inductive elements disposed on a single bobbin. A capacitive element is coupled between the first and second inductive elements to allow the inductively coupled inductive elements to operate independently when a lamp is removed from the circuit. A steady state strike voltage is generated at the lamp terminals from which a lamp has been removed. In another embodiment, a circuit includes a first circuit path including a first inductive element coupled to a first lamp and a second circuit including a second inductive element coupled to a second lamp. The first and second inductive elements are inductively coupled to effectively cancel flux generated while the first and second lamps are energized. When one of the lamps is removed, flux is no longer canceled so that a strike voltage is generated at the lamp terminals from which the lamp was removed.