摘要:
When oganohalosilanes are prepared by charging a reactor with a contact mass containing metallic silicon and a copper catalyst and introducing an organohalide-containing gas into the reactor to effect the direct reaction, 50-10,000 ppm of bronze phosphide is added to the contact mass. The invention is successful in efficiently producing organohalosilanes in a high STY and low T/D.
摘要:
In an industrial process for preparing organohalosilanes by reacting metallic silicon particles with an organohalide in the presence of a copper catalyst, a contact mass composed of the metallic silicon and the catalyst further contains an effective amount of a phosphine chalcogenide compound. The invention drastically increases the silane formation rate and the utilization of silicon without lowering the selectivity of useful silane.
摘要:
Organohalosilanes are prepared by charging a reactor with a contact mass of metallic silicon and a catalyst and feeding an organohalide-containing gas to the reactor. Tin or a tin compound is used as the catalyst. Then organohalosilanes can be produced quite efficiently at a high reaction rate while maintaining a low T/D ratio and minimizing the deposition of by-products and carbon.
摘要:
In a process for preparing oganohalosilanes by reacting metallic silicon particles with an organohalide in the presence of a copper catalyst, a contact mass composed of the metallic silicon and the catalyst further contains a minute, but effective amount of a catalytic metal powder which has been produced by an atomizing technique. The process is successful in drastically increasing a formation rate without lowering the selectivity of useful silane.
摘要:
Organohalosilanes are prepared by reacting metallic silicon particles with an organohalide in the presence of a copper catalyst. A contact mass composed of metallic silicon and copper catalyst contains an effective amount of a catalyst powder obtained by mechanical surface treatment of a powder mixture of tin powder and another metal, typically copper powder, on a ball mill, stamp mill, jet mill, mechanofusion device or the like.
摘要:
In an industrial process for preparing organohalosilanes by reacting metallic silicon particles with an organohalide in the presence of a copper catalyst, a contact mass composed of the metallic silicon and the catalyst further contains an effective amount of a phosphonium compound having on the molecule at least one group of the formula: [R2R3R4P—]+Y− wherein R2, R3 and R4 each are a monovalent hydrocarbon group and Y is a halogen atom or acid group. The invention drastically increases the silane formation rate and the utilization of silicon without lowering the selectivity of useful silane.
摘要:
Organohalosilanes are prepared by charging a reactor with a contact mass comprising metallic silicon and a catalyst and feeding an organohalide-containing gas to the reactor. The contact mass is prepared by premixing metallic silicon and a tin compound and heat treating the premix at 300-600° C. in an inert gas atmosphere.
摘要:
Organohalosilanes are prepared by reacting metallic silicon particles with an organohalide in the presence of a copper catalyst. A contact mass composed of metallic silicon and copper catalyst contains an effective amount of a catalyst powder obtained by mechanical surface treatment of a powder mixture of tin powder and another metal, typically copper powder, on a ball mill, stamp mill, jet mill, mechanofusion device or the like.
摘要:
Organohalosilanes are prepared by charging a reactor with a contact mass of metallic silicon and a catalyst and feeding an organohalide-containing gas to the reactor. Tin or a tin compound is used as the catalyst. Then organohalosilanes can be produced quite efficiently at a high reaction rate while maintaining a low T/D ratio and minimizing the deposition of by-products and carbon.
摘要:
Organohalosilanes are prepared by reacting metallic silicon particles with an organohalide in the presence of a copper catalyst. A contact mass composed of the metallic silicon and the copper catalyst contains an effective amount of a catalyst alloy containing 0.2–8 wt % of tin and 4–20 wt % of phosphorus which is powdered by atomization.