Abstract:
A distributed collaborative computer system is provided that comprises a plurality of server computers interconnected via a high-speed link. Client computers can connect to any available server computer and start or join a conference hosted on either the server computer to which the client computer is connected or any other server in the system. As a result, the system and method of the present invention is easily scalable to support an arbitrary number of participants to a conference by merely adding the appropriate number of server computers to the system. In addition, by replicating the conference information on more than one server computer, the single point of failure limitation is eliminated. In fact, if a server hosting or participating in a conference malfunctions, the failure is detected by other server computers and the client computer is able to reconnect to the conference through a new server computer.
Abstract:
A distributed collaborative computer system is provided that comprises a plurality of server computers interconnected via a high-speed link. Client computers can connect to any available server computer and start or join a conference hosted on either the server computer to which the client computer is connected or any other server in the system. As a result, the system and method of the present invention is easily scalable to support an arbitrary number of participants to a conference by merely adding the appropriate number of server computers to the system. In addition, by replicating the conference information on more than one server computer, the single point of failure limitation is eliminated. In fact, if a server hosting or participating in a conference malfunctions, the failure is detected by other server computers and the client computer is able to reconnect to the conference through a new server computer.
Abstract:
A distributed collaborative computer system is provided that comprises a plurality of server computers interconnected via a high-speed link. Client computers can connect to any available server computer and start or join a conference hosted on either the server computer to which the client computer is connected or any other server in the system. As a result, the system and method of the present invention is easily scalable to support an arbitrary number of participants to a conference by merely adding the appropriate number of server computers to the system. In addition, by replicating the conference information on more than one server computer, the single point of failure limitation is eliminated. In fact, if a server hosting or participating in a conference malfunctions, the failure is detected by other server computers and the client computer is able to reconnect to the conference through a new server computer.
Abstract:
A distributed collaborative computer system is provided that comprises a plurality of server computers interconnected via a high-speed link. Client computers can connect to any available server computer and start or join a conference hosted on either the server computer to which the client computer is connected or any other server in the system. As a result, the system and method of the present invention is easily scalable to support an arbitrary number of participants to a conference by merely adding the appropriate number of server computers to the system. In addition, by replicating the conference information on more than one server computer, the single point of failure limitation is eliminated. In fact, if a server hosting or participating in a conference malfunctions, the failure is detected by other server computers and the client computer is able to reconnect to the conference through a new server computer.
Abstract:
A distributed collaborative computer system is provided that comprises a plurality of server computers interconnected via a high-speed link. Client computers can connect to any available server computer and start or join a conference hosted on either the server computer to which the client computer is connected or any other server in the system. As a result, the system and method of the present invention is easily scalable to support an arbitrary number of participants to a conference by merely adding the appropriate number of server computers to the system. In addition, by replicating the conference information on more than one server computer, the single point of failure limitation is eliminated. In fact, if a server hosting or participating in a conference malfunctions, the failure is detected by other server computers and the client computer is able to reconnect to the conference through a new server computer.
Abstract:
A fault-tolerant distributed collaborative computer system is provided that comprises a plurality of server computers interconnected via a high-speed link. By replicating the conference information on more than one server computer, the single point of failure limitation is eliminated. In fact, if a server hosting or participating in a conference malfunctions, the failure is detected by other server computers and the client computer is able to reconnect to the conference through a new server computer. In addition, the state of processes executed by the server computers is periodically replicated, so that when failure of a process is detected a new processes can be spawned and the replicated state information loaded onto the new process, allowing the on-line conference to continue.
Abstract:
A distributed collaborative computer system is provided that comprises a plurality of server computers interconnected via a high-speed link. Client computers can connect to any available server computer and start or join a conference hosted on either the server computer to which the client computer is connected or any other server in the system. As a result, the system and method of the present invention is easily scalable to support an arbitrary number of participants to a conference by merely adding the appropriate number of server computers to the system. In addition, by replicating the conference information on more than one server computer, the single point of failure limitation is eliminated. In fact, if a server hosting or participating in a conference malfunctions, the failure is detected by other server computers and the client computer is able to reconnect to the conference through a new server computer.
Abstract:
A distributed collaborative computer system is provided that comprises a plurality of server computers interconnected via a high-speed link. Client computers can connect to any available server computer and start or join a conference hosted on either the server computer to which the client computer is connected or any other server in the system. As a result, the system and method of the present invention is easily scalable to support an arbitrary number of participants to a conference by merely adding the appropriate number of server computers to the system. In addition, by replicating the conference information on more than one server computer, the single point of failure limitation is eliminated. In fact, if a server hosting or participating in a conference malfunctions, the failure is detected by other server computers and the client computer is able to reconnect to the conference through a new server computer.
Abstract:
A distributed collaborative computer system is provided that comprises a plurality of server computers interconnected via a high-speed link. Client computers can connect to any available server computer and start or join a conference hosted on either the server computer to which the client computer is connected or any other server in the system. As a result, the system and method of the present invention is easily scalable to support an arbitrary number of participants to a conference by merely adding the appropriate number of server computers to the system. In addition, by replicating the conference information on more than one server computer, the single point of failure limitation is eliminated. In fact, if a server hosting or participating in a conference malfunctions, the failure is detected by other server computers and the client computer is able to reconnect to the conference through a new server computer.
Abstract:
A stabilized flour, such as stabilized whole grain wheat flour, exhibiting unexpectedly superior extended shelf life and superior biscuit baking functionality, may be produced with or without heating to inhibit lipase by subjecting whole grains or a bran and germ fraction or component to treatment with a lipase inhibitor, such as an acid or green tea extract. Treatment with the lipase inhibitor may be performed during tempering of the whole grains or berries or during hydration of the bran and germ fraction or component.