摘要:
A green luminescent material of terbium doped gadolinium borate is provided. The luminescent material has a formula of M3Gd1-xTbx(BO3)3, wherein, M is alkaline earth metal element and x is 0.005-0.5. The method for preparing the luminescent material comprises the following steps: selecting the source compounds of alkaline earth metal ion, boric acid radical ion (BO33−), Gd3+ and Tb3+ by the stoichiometric ratio, wherein, the stoichiometric ratio is the molar ratio of the corresponding element in the formula of M3Gd1-xTbx(BO3)3, and the source compound of BO33− is over 10%-30% by the molar ratio; mixing; pre-treatment by sintering; cooling; grinding; calcination; and cooling to obtain the luminescent material.
摘要:
Terbium doped phosphate-based green luminescent material and preparation method thereof are provided. The chemical formula of the material is M3RE1-xTbx(PO4)3, wherein, M is alkaline-earth metals, RE is rare-earth elements, x is in a range of 0.001 to 1. The preparation method of the material includes the following steps; providing the compound used as the source of alkaline earth metal, the compound used as the source of phosphate, the compound used as the source of rare-earth, and the compound used as the source of Tb3+ according to the molar ratio of the elements in M3RE1-xTbx(PO4)3, wherein, the compound used as the source of phosphate is added at excess molar ratio in a range of 10% to 30%; mixing and grinding the compound to get mixture; sintering the mixture as pre-treatment, and then cooling the mixture to get a sintered matter; grinding; calcining in reducing atmosphere, and then cooling them.
摘要:
A green luminescent material of terbium doped gadolinium borate is provided. The luminescent material has a formula of M3Gd1-xTbx(BO3)3, wherein, M is alkaline earth metal element and x is 0.005-0.5. The method for preparing the luminescent material comprises the following steps: selecting the source compounds of alkaline earth metal ion, boric acid radical ion (BO33−), Gd3+ and Tb3+ by the stoichiometric ratio, wherein, the stoichiometric ratio is the molar ratio of the corresponding element in the formula of M3Gd1-xTbx(BO3)3, and the source compound of BO33 is over 10%-30% by the molar ratio; mixing; pre-treatment by sintering; cooling; grinding; calcination; and cooling to obtain the luminescent material.
摘要:
A luminescent material and a preparation method thereof are provided. The said luminescent material is represented by the following chemical formula: Ln2-xEuxSn2O7, wherein Ln is selected from one of Gd, Y and La, 0.1≦x≦1.5. The said luminescent material has good electrical performance, anti-electron bombardment and stable luminescent property. It is appropriate to be used in field emission light-emitting devices. The said preparation method has simple technique, no pollution, manageable process conditions, low preparation temperature and low equipment requirement, and is beneficial to industry production.
摘要:
A luminescent material and a preparation method thereof are provided. The said luminescent material is represented by the following chemical formula: Ln2−EuxSn2O7, wherein Ln is selected from one of Gd, Y and La, 0.1≦x≦1.5. The said luminescent material has good electrical performance, anti-electron bombardment and stable luminescent property. It is appropriate to be used in field emission light-emitting devices. The said preparation method has simple technique, no pollution, manageable process conditions, low preparation temperature and low equipment requirement, and is beneficial to industry production.