Statistical approach to large-scale image annotation
    1.
    发明授权
    Statistical approach to large-scale image annotation 有权
    大规模图像注释的统计方法

    公开(公告)号:US08594468B2

    公开(公告)日:2013-11-26

    申请号:US13406804

    申请日:2012-02-28

    IPC分类号: G06K9/60

    CPC分类号: G06K9/00684 G06K2209/27

    摘要: Statistical approaches to large-scale image annotation are described. Generally, the annotation technique includes compiling visual features and textual information from a number of images, hashing the images visual features, and clustering the images based on their hash values. An example system builds statistical language models from the clustered images and annotates the image by applying one of the statistical language models.

    摘要翻译: 描述了大规模图像注释的统计方法。 通常,注释技术包括从许多图像编译视觉特征和文本信息,对图像进行散列视觉特征,并且基于它们的散列值对图像进行聚类。 示例系统从群集图像构建统计语言模型,并通过应用统计语言模型之一来注释图像。

    Bipartite graph reinforcement modeling to annotate web images
    2.
    发明授权
    Bipartite graph reinforcement modeling to annotate web images 有权
    双边图加强建模以注释网页图像

    公开(公告)号:US08321424B2

    公开(公告)日:2012-11-27

    申请号:US11848157

    申请日:2007-08-30

    IPC分类号: G06F7/00 G06F17/30

    CPC分类号: G06F17/30265 G06F17/30864

    摘要: Systems and methods for bipartite graph reinforcement modeling to annotate web images are described. In one aspect the systems and methods implement bipartite graph reinforcement modeling operations to identify a set of annotations that are relevant to a Web image. The systems and methods annotate the Web image with the identified annotations. The systems and methods then index the annotated Web image. Responsive to receiving an image search query from a user, wherein the image search query comprises information relevant to at least a subset of the identified annotations, the image search engine service presents the annotated Web image to the user.

    摘要翻译: 描述了用于注释网络图像的二分图加强建模的系统和方法。 在一个方面,系统和方法实现二分图加强建模操作,以识别与Web图像相关的一组注释。 系统和方法用已识别的注释注释Web图像。 系统和方法然后索引注释的Web图像。 响应于从用户接收图像搜索查询,其中所述图像搜索查询包括与所识别的注释的至少一个子集相关的信息,所述图像搜索引擎服务将所述注释的Web图像呈现给所述用户。

    Statistical Approach to Large-scale Image Annotation
    3.
    发明申请
    Statistical Approach to Large-scale Image Annotation 有权
    大规模图像注释的统计方法

    公开(公告)号:US20120155774A1

    公开(公告)日:2012-06-21

    申请号:US13406804

    申请日:2012-02-28

    IPC分类号: G06K9/64 G06K9/46

    CPC分类号: G06K9/00684 G06K2209/27

    摘要: Statistical approaches to large-scale image annotation are described. Generally, the annotation technique includes compiling visual features and textual information from a number of images, hashing the images visual features, and clustering the images based on their hash values. An example system builds statistical language models from the clustered images and annotates the image by applying one of the statistical language models.

    摘要翻译: 描述了大规模图像注释的统计方法。 通常,注释技术包括从许多图像编译视觉特征和文本信息,对图像进行散列视觉特征,并且基于它们的散列值对图像进行聚类。 示例系统从群集图像构建统计语言模型,并通过应用统计语言模型之一来注释图像。

    Statistical Approach to Large-scale Image Annotation
    4.
    发明申请
    Statistical Approach to Large-scale Image Annotation 有权
    大规模图像注释的统计方法

    公开(公告)号:US20090297050A1

    公开(公告)日:2009-12-03

    申请号:US12130943

    申请日:2008-05-30

    IPC分类号: G06K9/62

    CPC分类号: G06K9/00684 G06K2209/27

    摘要: Statistical approaches to large-scale image annotation are described. Generally, the annotation technique includes compiling visual features and textual information from a number of images, hashing the images visual features, and clustering the images based on their hash values. An example system builds statistical language models from the clustered images and annotates the image by applying one of the statistical language models.

    摘要翻译: 描述了大规模图像注释的统计方法。 通常,注释技术包括从许多图像编译视觉特征和文本信息,对图像进行散列视觉特征,并且基于它们的散列值对图像进行聚类。 示例系统从群集图像构建统计语言模型,并通过应用统计语言模型之一来注释图像。

    Statistical approach to large-scale image annotation
    5.
    发明授权
    Statistical approach to large-scale image annotation 有权
    大规模图像注释的统计方法

    公开(公告)号:US08150170B2

    公开(公告)日:2012-04-03

    申请号:US12130943

    申请日:2008-05-30

    IPC分类号: G06K9/72

    CPC分类号: G06K9/00684 G06K2209/27

    摘要: Statistical approaches to large-scale image annotation are described. Generally, the annotation technique includes compiling visual features and textual information from a number of images, hashing the images visual features, and clustering the images based on their hash values. An example system builds statistical language models from the clustered images and annotates the image by applying one of the statistical language models.

    摘要翻译: 描述了大规模图像注释的统计方法。 通常,注释技术包括从许多图像编译视觉特征和文本信息,对图像进行散列视觉特征,并且基于它们的散列值对图像进行聚类。 示例系统从群集图像构建统计语言模型,并通过应用统计语言模型之一来注释图像。

    Bipartite Graph Reinforcement Modeling to Annotate Web Images
    6.
    发明申请
    Bipartite Graph Reinforcement Modeling to Annotate Web Images 有权
    用于注释Web图像的二分图加固建模

    公开(公告)号:US20090063455A1

    公开(公告)日:2009-03-05

    申请号:US11848157

    申请日:2007-08-30

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30265 G06F17/30864

    摘要: Systems and methods for bipartite graph reinforcement modeling to annotate web images are described. In one aspect the systems and methods implement bipartite graph reinforcement modeling operations to identify a set of annotations that are relevant to a Web image. The systems and methods annotate the Web image with the identified annotations. The systems and methods then index the annotated Web image. Responsive to receiving an image search query from a user, wherein the image search query comprises information relevant to at least a subset of the identified annotations, the image search engine service presents the annotated Web image to the user.

    摘要翻译: 描述了用于注释网络图像的二分图加强建模的系统和方法。 在一个方面,系统和方法实现二分图加强建模操作,以识别与Web图像相关的一组注释。 系统和方法用已识别的注释注释Web图像。 系统和方法然后索引注释的Web图像。 响应于从用户接收图像搜索查询,其中所述图像搜索查询包括与所识别的注释的至少一个子集相关的信息,所述图像搜索引擎服务将所述注释的Web图像呈现给所述用户。

    Estimating word correlations from images
    7.
    发明授权
    Estimating word correlations from images 有权
    从图像估计字相关性

    公开(公告)号:US08457416B2

    公开(公告)日:2013-06-04

    申请号:US11956333

    申请日:2007-12-13

    IPC分类号: G06K9/72

    CPC分类号: G06F17/30247 G06F17/30731

    摘要: Word correlations are estimated using a content-based method, which uses visual features of image representations of the words. The image representations of the subject words may be generated by retrieving images from data sources (such as the Internet) using image search with the subject words as query words. One aspect of the techniques is based on calculating the visual distance or visual similarity between the sets of retrieved images corresponding to each query word. The other is based on calculating the visual consistence among the set of the retrieved images corresponding to a conjunctive query word. The combination of the content-based method and a text-based method may produce even better result.

    摘要翻译: 使用基于内容的方法来估计词相关性,其使用词的图像表示的视觉特征。 可以通过使用将主题词作为查询词的图像搜索从数据源(例如因特网)检索图像来生成主题词的图像表示。 该技术的一个方面是基于计算对应于每个查询词的检索图像组之间的视觉距离或视觉相似度。 另一个是基于计算与连接查询词对应的检索到的图像的集合之间的视觉一致性。 基于内容的方法和基于文本的方法的组合可以产生更好的结果。

    CLASSIFICATION OF IMAGES AS ADVERTISEMENT IMAGES OR NON-ADVERTISEMENT IMAGES
    8.
    发明申请
    CLASSIFICATION OF IMAGES AS ADVERTISEMENT IMAGES OR NON-ADVERTISEMENT IMAGES 有权
    图像分类作为广告图像或非广告图像

    公开(公告)号:US20110058734A1

    公开(公告)日:2011-03-10

    申请号:US12945635

    申请日:2010-11-12

    IPC分类号: G06K9/62

    CPC分类号: G06Q30/02 G06Q30/0277

    摘要: An advertisement image classification system trains a binary classifier to classify images as advertisement images or non-advertisement images and then uses the binary classifier to classify images of web pages as advertisement images or non-advertisement images. During a training phase, the classification system generates training data of feature vectors representing the images and labels indicating whether an image is an advertisement image or a non-advertisement Image. The classification system trains a binary classifier to classify Images using training data. During a classification phase, the classification system inputs a web page with an image and generates a feature vector for the image. The classification system then applies the trained binary classifier to the feature vector to generate a score indicating whether the image is an advertisement image or a non-advertisement image.

    摘要翻译: 广告图像分类系统训练二进制分类器将图像分类为广告图像或非广告图像,然后使用二进制分类器将网页的图像分类为广告图像或非广告图像。 在训练阶段,分类系统生成表示图像的特征向量的训练数据,以及指示图像是广告图像还是非广告图像的标签。 分类系统训练二进制分类器,以使用训练数据对图像进行分类。 在分类阶段,分类系统输入具有图像的网页,并生成图像的特征向量。 然后,分类系统将经过训练的二进制分类器应用于特征向量,以生成指示图像是广告图像还是非广告图像的分数。

    Head pose assessment methods and systems
    9.
    发明授权
    Head pose assessment methods and systems 有权
    头姿势评估方法和系统

    公开(公告)号:US07844086B2

    公开(公告)日:2010-11-30

    申请号:US12143717

    申请日:2008-06-20

    IPC分类号: G06K9/00

    摘要: Improvements are provided to effectively assess a user's face and head pose such that a computer or like device can track the user's attention towards a display device(s). Then the region of the display or graphical user interface that the user is turned towards can be automatically selected without requiring the user to provide further inputs. A frontal face detector is applied to detect the user's frontal face and then key facial points such as left/right eye center, left/right mouth corner, nose tip, etc., are detected by component detectors. The system then tracks the user's head by an image tracker and determines yaw, tilt and roll angle and other pose information of the user's head through a coarse to fine process according to key facial points and/or confidence outputs by pose estimator.

    摘要翻译: 提供了改进以有效地评估用户的脸部和头部姿势,使得计算机或类似装置可以跟踪用户对显示装置的注意。 然后可以自动选择用户转向的显示或图形用户界面的区域,而不需要用户提供进一步的输入。 应用前置面部检测器来检测使用者的正面,然后通过部件检测器检测左右眼中心,左/右口角,鼻尖等的关键面部点。 然后,系统通过图像跟踪器跟踪用户的头部,并且通过姿态估计器根据关键面部点和/或置信输出,通过粗略到精细处理确定用户头部的偏航,倾斜和滚动角度和其他姿态信息。

    Robust multi-view face detection methods and apparatuses
    10.
    发明授权
    Robust multi-view face detection methods and apparatuses 有权
    强大的多视角人脸检测方法和装置

    公开(公告)号:US07689033B2

    公开(公告)日:2010-03-30

    申请号:US10621260

    申请日:2003-07-16

    CPC分类号: G06K9/4614 G06K9/00228

    摘要: Face detection techniques are provided that use a multiple-stage face detection algorithm. An exemplary three-stage algorithm includes a first stage that applies linear-filtering to enhance detection performance by removing many non-face-like portions within an image, a second stage that uses a boosting chain that is adopted to combine boosting classifiers within a hierarchy “chain” structure, and a third stage that performs post-filtering using image pre-processing, SVM-filtering and color-filtering to refine the final face detection prediction. In certain further implementations, the face detection techniques include a two-level hierarchy in-plane pose estimator to provide a rapid multi-view face detector that further improves the accuracy and robustness of face detection.

    摘要翻译: 提供了使用多级面部检测算法的人脸检测技术。 示例性的三阶段算法包括第一阶段,其通过去除图像内的许多非面部部分来应用线性滤波以增强检测性能;第二阶段,其使用用于组合层级内的增强分类器的升压链 “链”结构,以及使用图像预处理,SVM滤波和颜色滤波来完成最终面部检测预测来执行后置滤波的第三阶段。 在某些进一步的实施方式中,面部检测技术包括两层次平面姿态估计器,以提供进一步提高面部检测的准确性和鲁棒性的快速多视角面部检测器。