摘要:
The invention concerns a heat coupling device for scanning force or atomic force microscopy, comprising a first heat conducting device (27), a second heat conducting device (28) and a coupling device (36, 38, 39, 40, 41), in which the first heat conducting device (27) is movable relative to the second heat conducting device (28) and the coupling device (36, 38, 39, 40, 41) is arranged between the first and second heat conducting device (27, 28) and designed so that it is at least partially deformable fluid-like and/or flexible and the heat can be transferred between the first and second heat conducting device (28).
摘要:
The invention concerns a device and a method for a scanning probe microscope, in particular, an atomic force scanning microscope. The invention is characterized in that it comprises a measuring device (100) including a lateral displacement mechanism (1) for displacing a measuring probe (5) in a plane, a vertical displacement mechanism (4) for displacing the measuring probe in a plane perpendicular to said plane, and sample-holder (11) for receiving a sample to be measured (6). An optical path (10) of the condenser is formed through the measuring device (100), so that the sample-holder (11) is arranged in the region of one end of the optical path (10) of the condenser.
摘要:
The invention relates to an apparatus and a method for a scanning probe microscope, comprising a measuring assembly which includes a lateral shifting unit to displace a probe in a plane, a vertical shifting unit to displace the probe in a direction perpendicular to the plane, and a specimen support to receive a specimen. A condenser light path is formed through the measuring assembly so that the specimen support is located in the area of an end of the condenser light path.
摘要:
The invention relates to a method and to a device for examining a test sample using a scanning probe microscope. According to the method a first and a second measurement using a scanning probe microscope are carried out on the test sample using a measuring probe system in which a measuring probe and another measuring probe are formed on a common measuring probe receptacle. During the first measurement, in relation to the test sample, the measuring probe is held in a first measurement position and the other measuring probe is held in another non-measurement position, and the test sample is examined with the measuring probe using a scanning probe microscope. After the first measurement, by displacing in relation to the test sample, the measuring probe is displaced from the measurement position into a non-measurement position and the other measuring probe from the other non-measurement position into another measurement position. During the second measurement, in relation to the test sample, the measuring probe is held in the non-measurement position and the other measuring probe is held in the other measurement position, and the test sample is examined with the other measuring probe using a scanning probe microscope. The invention also relates to a measuring sensor system of a scanning probe microscope.
摘要:
The invention relates to a method for operating a measurement system containing a scanning probe microscope, in particular an atomic force microscope, and to a measurement system for examining a measurement sample using a scanning probe microscope and for optically examining said sample. In the method, an optical image of a measurement section of a measurement sample to be examined, said image being recorded with the aid of an optical recording device, is displayed on a display apparatus, a choice of a position in the optical image is detected, and, for a scanning probe measurement, a measurement probe which is configured for the scanning probe measurement is moved, using a movement apparatus which moves the measurement probe and the measurement sample relative to one another, to a measurement position, which is assigned to the selected position in the optical image in accordance with coordinate transformation, by virtue of the movement apparatus being controlled in accordance with the coordinate transformation, wherein a previously determined assignment between a coordinate system of the optical image and a coordinate system of a space covered by movement positions of the measurement probe and the measurement sample is formed with the coordinate transformation, wherein the movement positions comprise the measurement position.
摘要:
The invention relates to a method for operating a measurement system containing a scanning probe microscope, in particular an atomic force microscope, and to a measurement system for examining a measurement sample using a scanning probe microscope and for optically examining said sample. In the method, an optical image of a measurement section of a measurement sample to be examined, said image being recorded with the aid of an optical recording device, is displayed on a display apparatus, a choice of a position in the optical image is detected, and, for a scanning probe measurement, a measurement probe which is configured for the scanning probe measurement is moved, using a movement apparatus which moves the measurement probe and the measurement sample relative to one another, to a measurement position, which is assigned to the selected position in the optical image in accordance with coordinate transformation, by virtue of the movement apparatus being controlled in accordance with the coordinate transformation, wherein a previously determined assignment between a coordinate system of the optical image and a coordinate system of a space covered by movement positions of the measurement probe and the measurement sample is formed with the coordinate transformation, wherein the movement positions comprise the measurement position.
摘要:
The invention relates to a method and a device for the positioning of a displaceable component in an examining system, particularly a measuring or an analytic system wherein, during the process, the displaceable component is displaced with the support of an actuating element coupled to the displaceable component from a home position into an end position, wherein the actuating element is moved by means of a drive force and the displaceable component is impacted with a fixation force fixating the displaceable component in the end position by way of a fixation component connected to the displaceable component, where the fixation component is submerged at least partially in a reservoir of a medium and is fixated in the medium by means of the transformation of the medium from a liquid state into a solidified state, wherein the medium is transformed from the liquid state into the solidified state by means of the impact-application with a manipulating variable.