摘要:
The invention relates to a computer-generated hologram that is capable of reconstructing a full-color image and achieving a resolution higher than ever before. The recording plane 20 of the hologram is divided by a multiplicity of parallel sections in the horizontal direction to define a multiplicity of areas C1r, C1g, C1b, etc. Amplitude information and phase information corresponding to periodically different wavelengths RGB are recorded in a direction traversing the multiplicity of areas. Upon reconstruction by given illumination Lw, reconstructing light having periodically different wavelengths diffracted from the amplitude information and phase information recorded in the respective areas travels toward the recording plane of the hologram such that the reconstructed image can be viewed at a point-of-view position that is a given position E. Information about the same portion of the original image is recorded in individual points belonging to the same area, and information about another corresponding portion of the original image is recorded in individual points belonging to another area.
摘要:
The invention relates to a process by which a multi-image type hologram wherein one 3D image changes over to another depending on a viewing direction can be fabricated in simple construction and a multi-image type hologram fabricated by that process. According to the process for the fabrication of a multi-image type hologram wherein one image changes over to another depending on a viewing direction, the area of a hologram recording material is divided into a plurality of sub-areas 111, 112 and 113. Objects to be displayed on different images are holo-graphically recorded in the respective sub-areas, using reference light having the same angle of incidence, thereby recording the first-stage hologram 11. Object images O1′, O2′ and O3′ recorded in the respective sub-areas 111, 112 and 113 are simultaneously reconstructed from the recorded first-stage hologram 11, so that a second-stage hologram recording material 21 is located near the reconstructed object images O1′, O2′ and O3′ for recording them as a reflection or transmission type volume hologram.
摘要:
A recording plane of a computer-generated hologram that is capable of reconstructing a full-color image and achieving a high resolution is divided by a multiplicity of parallel sections in the horizontal direction to define a multiplicity of areas. Amplitude information and phase information corresponding to different wavelengths which vary periodically in a direction traversing the multiplicity of areas, is recorded in the recording medium. Information about the same portion of the original image is recorded in individual points belonging to the same area, and information about another corresponding portion of the original image is recorded in individual points belonging to another area.
摘要:
A computer-generated hologram that is capable of reconstructing a full-color image and achieving a high resolution is provided. A recording plane of the hologram is divided by a multiplicity of parallel sections in the horizontal direction to define a multiplicity of areas. Amplitude information and phase information corresponding to different wavelengths which vary periodically in a direction traversing the multiplicity of areas, is recorded in the recording medium. Information about the same portion of the original image is recorded in individual points belonging to the same area, and information about another corresponding portion of the original image is recorded in individual points belonging to another area.
摘要:
A method and device for manufacturing a hologram recording medium. Arrangements are made to enable different original images to be reproduced upon observation from different positions and yet enable reproduced images of high resolution to be obtained.
摘要:
Two original images to be recorded are prepared as data (S10). A plurality of unit regions, each having an adequate area to record interference fringes of visible light, are defined and positioned on a hologram recording surface (S20). A gradation pattern, with which appearance probabilities of two record attributes gradually change in space, is overlapped onto the recording surface, and to each unit region, one of either record attributes is assigned according to the appearance probabilities of the respective record attributes at each individual position (S30). In each unit region, to which the first record attribute is assigned, the first original image is recorded as an interference fringe pattern, a diffraction grating pattern, or a scattering structure pattern, and in each unit region, to which the second record attribute is assigned, the second original image is recorded as an interference fringe pattern, a diffraction grating pattern, or a scattering structure pattern (S40), and a record pattern is formed on a physical medium (S50).
摘要:
For the purpose of preparing a computer-generated hologram, which has very high resolution and many numbers of parallaxes, the present invention provides a computer-generated holographic stereogram, wherein a virtual point light source group (11) is set up spatially on a side opposite to the observation side of the hologram (12), luminance angular distribution AWLci (θxz, θyz) of divergent light diverged from each of the virtual point light sources of said virtual point light source group toward observation side is divided by angular division, and within the divided angle, among the multiple images positioned on the plane of said virtual point light source group (11), a divergent light to be equal to the divergent light diverged from a point of amplitude equal to the density of pixel of the image corresponding to each of divided angle or equal to a value in a certain fixed relation with the density of the images at the position of the virtual point light source is recorded as the object light (1) at one of the positions on the observation side of the virtual point light source group.
摘要:
The invention provides a computer-generated hologram which can be viewed in white at the desired viewing region and a reflective liquid crystal display using the same as a reflector. The computer-generated hologram H is designed to diffuse light having a given reference wavelength λSTD and incident thereon at a given angle of incidence θ in a specific angle range. In a range of wavelengths λmin to λmax including the reference wavelength λSTD wherein zero-order transmission light or zero-order reflection light of incident light on the computer-generated hologram at a given angle of incidence is seen in white by additive color mixing, the maximum diffraction angle β2MIN of incident light of the minimum wavelength λMIN in the wavelength range and incident at the angle of incidence θ is larger than the minimum diffraction angle β1MAX of incident light of the maximum wavelength λMAX in the wavelength range and incident at said angle of incidence θ.
摘要:
Arrangements are made to enable different original images to be reproduced upon observation from different positions and yet enable reproduced images of high resolution to be obtained. In a case of recording two original images, each of the two original images Ia and Ib is defined as a set of point light sources in an XYZ global coordinate system, and two propagation spaces Sa and Sb, each enabling propagation of light emitted from an origin Q of an αβγ local coordinate system, are defined. A predetermined recording plane and a reference light are set in the XYZ coordinate system, and an interference fringe pattern, which is formed on the recording plane by object light components from the point light sources constituting the respective original images and the reference light, is determined by computation. In this process, the computation is performed upon deeming that a light from a point light source belonging to the original image Ia spreads only within the propagation space Sa, with the origin Q of the αβγ coordinate system being overlappingly set at the position of the point light source, and that a light from a point light source belonging to the original image Ib spreads only within the propagation space Sb, with the origin Q of the αβγ coordinate system being overlappingly set at the position of the point light source.
摘要:
The present invention relates to a method for fabricating a computer-generated hologram or a holographic stereogram which can reconstruct a three-dimensional object having visualized cross-sectional surfaces, wherein the three-dimensional object composed only of surface data is processed to have the visualized cross-sectional surfaces on a given cross section thereof by adding surface data to the cross-sectional surfaces. The method includes a step (ST11) of obtaining a number of two-dimensional cross-sectional image data of a three-dimensional object, a step (ST12) of producing three-dimensional object image data composed only of surface data of the three-dimensional object from the two-dimensional cross-sectional image data obtained in the above step, a step (ST13) of cutting the three-dimensional object composed only of the surface data along a predetermined cross section, a step (ST14) of defining the shape of the three-dimensional object to be recorded as a hologram by adding surface data representing cross-sectional surfaces on the cut cross section to the same, steps (ST15)-(ST17) of defining the arrangement of the defined three-dimensional object, a hologram plane, and a reference beam to compute interference fringes on the hologram plane, and steps (ST18)-(ST20) of recording the thus computed interference fringes on a recording medium.