Abstract:
A strain sensor for determining a strain experienced by a body under test in response to forces exerted on the body-under-test. The strain sensor comprises an interface member mounted on a surface of the body-under-test and a SAW sensor mounted on a surface of the interface member. The strain in the body-under-test is translated to strain in the SAW sensor and determined by the SAW sensor. The strain in the SAW sensor is responsive to the strain in the body-under-test.
Abstract:
A strain sensor for determining a strain experienced by a body under test in response to forces exerted on the body-under-test. The strain sensor comprises an interface member mounted on a surface of the body-under-test and a SAW sensor mounted on a surface of the interface member. The strain in the body-under-test is translated to strain in the SAW sensor and determined by the SAW sensor. The strain in the SAW sensor is responsive to the strain in the body-under-test.
Abstract:
A surface acoustic wave (SAW) device package and method for packaging a SAW device provide a surface excited device having a small footprint, low cost and fabricated according to a unique manufacturing process. A substrate including a SAW active area on a first side is bonded to another similar sized substrate with a space sufficient to allow the propagation of the SAW on a top surface of the substrate. The two substrates have similar thermal expansion coefficients such that stress from the sealing process is minimized. The two substrates are sealed using either a low melting point glass or an organic compound such that conductive pathways exist through the seal allowing the internal device to access an external electrical connection.
Abstract:
A surface acoustic wave (SAW) device package and method for packaging a SAW device provide a surface excited device having a small footprint, low cost and fabricated according to a unique manufacturing process. A substrate including a SAW active area on a first side is bonded to another similar sized substrate with a space sufficient to allow the propagation of the SAW on a top surface of the substrate. The two substrates have similar thermal expansion coefficients such that stress from the sealing process is minimized. The two substrates are sealed using either a low melting point glass or an organic compound such that conductive pathways exist through the seal allowing the internal device to access an external electrical connection.