摘要:
The optical scanner of this invention includes a light source, an optical deflector for scanning a light flux from the light source, a first image formation optical system disposed between the light source and the optical deflector, and a second image formation optical system disposed between the optical deflector and a surface to be scanned. The second image formation optical system includes a curved mirror for reflecting a light flux from the optical deflector and a correction lens for converging the light flux from the curved mirror on the surface to be scanned. A refractive power in the sub-scanning direction at the center of the correction lens in the scanning direction is different from that at the periphery thereof.
摘要:
The scanner optics of this invention includes a condensing lens arrangement composed of a first aspherical lens having a positive refractive power and a convex meniscus surface on the side of the scanning surface and a second toric lens of which incident surface is saddle toroidal where a point on the incident surface has a greater radius of curvature in the sub-scanning direction as the point is farther from the optical axis in the scanning direction. A laser light flux emitted from a light source is deflected and scanned by a polygon mirror so as to form an image on a scanning surface via the condensing lens arrangement.
摘要:
A plurality of types of ink having different wavelength characteristics are used for multiple printing of code information. When two or more types of ink are to be printed in an overlapping manner, in a region 8 in which one type of ink 4 and another type of ink 5 are printed in the overlapping manner, the ink 4 and the ink 5 are printed so as not to completely overlap each other by using a checkered pattern 9. As a result, the multiple printing can be performed without strict constraints on the wavelength characteristics of the ink.
摘要:
An optical scanner comprising a light source unit, an optical deflector to scan a light beam from the light source unit, a first image formation optical system disposed between the light source unit and the optical deflector, and a second image formation optical system disposed between the optical deflector and the surface to be scanned, wherein the second image formation optical system comprises a first curved mirror to reflect the light beam from the optical deflector and a second curved mirror to focus the light beam from the first curved mirror on the surface to be scanned, having surface shapes of any of the group consisting of the first curved mirror having a toric surface with a convex shape in the main scanning direction, which is the direction a light beam is scanned in, and with a concave shape in the sub scanning direction, which is the direction perpendicular to the main scanning direction, and the first curved mirror having a toric surface with a concave shape in the main scanning direction and a convex shape in the sub scanning direction and a second curved mirror having a toric surface or cylindrical surface without a refractive power or with a concave shape in the main scanning direction, and with a concave shape in the sub scanning direction to focus the light beam from the first curved mirror on the surface to be scanned.
摘要:
A reflection of unnecessary light, which should be prevented, can be suppressed, and occurrence of stray light can be reduced using a member having an antireflection structure, comprising a plate-like portion 2, and an aperture portion 3 formed in the plate-like portion 2, wherein the antireflection structure having an aspect ratio of 1 or more and comprising structural elements arranged in an array form at a period smaller than the shortest wavelength of light, the reflection of which should be prevented, is formed on an inner wall 4 of the aperture portion 3.
摘要:
An optical scanner comprising a light source unit, an optical deflector to scan a light beam from the light source unit, a first image formation optical system disposed between the light source unit and the optical deflector, and a second image formation optical system disposed between the optical deflector and the surface to be scanned, wherein the second image formation optical system comprises a first curved mirror to reflect the light beam from the optical deflector and a second curved mirror to focus the light beam from the first curved mirror on the surface to be scanned, having surface shapes of any of the group consisting of the first curved mirror having a toric surface with a convex shape in the main scanning direction, which is the direction a light beam is scanned in, and with a concave shape in the sub scanning direction, which is the direction perpendicular to the main scanning direction, and the first curved mirror having a toric surface with a concave shape in the main scanning direction and a convex shape in the sub scanning direction and a second curved mirror having a toric surface or cylindrical surface without a refractive power or with a concave shape in the main scanning direction, and with a concave shape in the sub scanning direction to focus the light beam from the first curved mirror on the surface to be scanned.
摘要:
A reflection of unnecessary light, which should be prevented, can be suppressed, and occurrence of stray light can be reduced using a member having an antireflection structure, comprising a plate-like portion 2, and an aperture portion 3 formed in the plate-like portion 2, wherein the antireflection structure having an aspect ratio of 1 or more and comprising structural elements arranged in an array form at a period smaller than the shortest wavelength of light, the reflection of which should be prevented, is formed on an inner wall 4 of the aperture portion 3.
摘要:
A display device comprises a transparent type LCD including a pair of transparent plates facing each other, spaced with a predetermined gap and a polymer dispersed liquid crystal disposed between the transparent plates, which can be switched between a transparent state and a diffraction state pixel by pixel to display images or characters; a signal generator for giving display signals to the transparent type LCD; and a light system including a light source emitting light rays that enter the transparent plates from their edge faces, and a stop plate disposed between the edge faces of the transparent plates and the light source. This stop plate has an opening that extends along the longitudinal direction of the edge face of the transparent plate, and the width of the opening in the cross direction changes cyclically along the longitudinal direction.
摘要:
The present invention provides a method of designing a post-objective type optical scanner having an optical deflector composed of cylindrical or spherical reflecting surfaces for deflecting a converged light beam from a condensing lens by reflecting the converged light beam as it rotates, and a compensating lens located in an optical path between the optical deflector and a scanning surface for converging the deflected light beam from the optical deflector to a point on the scanning surface, of which power in the sub-scanning direction varies with a length from the center thereof in the scanning direction. The method is characterized in that a scanning speed(S) defined by a scanning width on a scanning surface per an angle unit of rotation of the optical deflector is selected by exploiting a characteristic that a maximum curvature of field in the scanning direction drops to a minimum value in a certain range predetermined by a length from a point of deflection of the optical deflector to the scanning surface(L) based on a correlation between the scanning speed and the maximum curvature of field in the scanning direction. In the method, offset of the f.multidot..theta. characteristic is maintained to be within .+-.0.5%, and the certain range is expressed as ##EQU1##
摘要:
An illumination optical system includes a light source for emitting a plurality of different colors of light, a plurality of rotating optical scanners, and a plurality of scanning lenses. Each of the optical scanners has a reflecting surface that is formed helically around a cylindrical body. The different colors of light enter the respective reflecting surfaces in the direction parallel to the rotation axis, are reflected therefrom, and pass through the scanning lenses, so that each color of light is magnified and then scans the region to be illuminated sequentially. This makes it possible to provide an illumination optical system that can improve scanning linearity, lower noise because of its reduced wind resistance, and achieve reduction in the cost and power consumption.