摘要:
A base station controller (BSC) of a radio or wireless telecommunications network base station includes a director. A BSC includes multiple central processing units (CPUs), with each CPU running a call-processing application for one or more connections. The director is a logical entity that intercepts wireless call-setup signaling and assigns each corresponding connection to a CPU according to a centralized load-balancing algorithm. The centralized load-balancing algorithm distributes connections to less loaded CPUs to i) prevent individual CPUs from overloading, ii) utilize otherwise unused system resources, and iii) increase overall system performance. The director hosts cell components that manage code division multiple access (CDMA) downlink spreading codes for a base station, providing centralized allocation of spreading codes by the base station.
摘要:
A base station controller (BSC) of a radio or wireless telecommunications network base station includes a director. A BSC includes multiple central processing units (CPUs), with each CPU running a call-processing application for one or more connections. The director is a logical entity that intercepts wireless call-setup signaling and assigns each corresponding connection to a CPU according to a centralized load-balancing algorithm. The centralized load-balancing algorithm distributes connections to less loaded CPUs to i) prevent individual CPUs from overloading, ii) utilize otherwise unused system resources, and iii) increase overall system performance. The director hosts cell components that manage code division multiple access (CDMA) downlink spreading codes for a base station, providing centralized allocation of spreading codes by the base station.
摘要:
A SoftRouter architecture deconstructs routers by separating the control entities of a router from its forwarding components, enabling dynamic binding between them. In the SoftRouter architecture, control plane functions are aggregated and implemented on a few smart servers which control forwarding elements that are multiple network hops away. A dynamic binding protocol performs network-wide control plane failovers. Network stability is improved by aggregating and remotely hosting routing protocols, such as OSPF and BGP. This results in faster convergence, lower protocol messages processed, and fewer route changes following a failure. The SoftRouter architecture includes a few smart control entities that manage a large number of forwarding elements to provide greater support for network-wide control. In the SoftRouter architecture, routing protocols operate remotely at a control element and control one or more forwarding elements by downloading the forwarding tables, etc. into the forwarding elements. Intra-domain routing and inter-domain routing are also included.
摘要:
A dynamic binding protocol has three tasks that run in parallel: discovery, association, and operation. During discovery, control elements (CEs) and forwarding elements (FEs) learn about immediate neighbors and CEs in a SoftRouter network that has separate control and data planes. During association, FEs associate with CEs and are configured with basic parameters, such as IP interface addresses, hostnames, and the like. During operation, failover and packet tunneling between CEs and FEs is handled.
摘要:
The amount of TCP/IP packets which can be sent from an Internet network to a wireless network is maximized by modifying a receive window value of an acknowledgment (ACK) before the ACK is sent on to a source of data packets within the Internet network. The receive window value is modified to take into consideration delay and rate variations which occur in the wireless network.
摘要:
Techniques and systems for managing transmissions from a TCP source by regulating the flow of acknowledgement signals to the TCP source are described. An acknowledgement signal regulator monitors a data queue used to buffer data packets received from the TCP source and an acknowledgement signal queue used to store acknowledgement signals to be transmitted to the TCP source. An acknowledgement signal release manager determines the available space in the data queue and the expected number of data packets arriving at the data queue, and manages the release of acknowledgement signals from the acknowledgement signal queue to the TCP source so as to prevent an undesired overflow of the data queue resulting from the arrival of an excessive number of data packets from the TCP source.
摘要:
The amount of TCP/IP packets which can be sent from an Internet network to a wireless network is maximized by modifying a receive window value of an acknowledgment (ACK) before the ACK is sent on to a source of data packets within the Internet network. The receive window value is modified to take into consideration delay and rate variations which occur in the wireless network.
摘要:
The amount of TCP/IP packets which can be sent from an Internet network to a wireless network is maximized by modifying a receive window value of an acknowledgment (ACK) before the ACK is sent on to a source of data packets within the Internet network. The receive window value is modified to take into consideration delay and rate variations which occur in the wireless network.
摘要:
Estimates are provided for the number of links needed in a Internet Protocol-Radio Access Network (IP-RAN) to ensure the IP-RAN is resilient to base station and radio network controller type failures.
摘要:
A dynamic binding protocol has three tasks that run in parallel: discovery, association, and operation. During discovery, control elements (CEs) and forwarding elements (FEs) learn about immediate neighbors and CEs in a SoftRouter network that has separate control and data planes. During association, FEs associate with CEs and are configured with basic parameters, such as IP interface addresses, hostnames, and the like. During operation, failover and packet tunneling between CEs and FEs is handled.