Abstract:
The Invention relates to a method for preparing a multichannel hollow fiber membrane. According to a certain ratio, ceramic powder, a macromolecular polymer, an organic solvent, and a dispersant are mixed evenly to prepare a membrane casting solution; and after bubble removing processing is performed on the membrane casting solution, a membrane green body is formed with the cooperation of a multichannel hollow fiber die and phase inversion. After the membrane green body is roasted at a high temperature, a multichannel ceramic hollow fiber membrane is formed. The multichannel ceramic hollow fiber membrane has an asymmetric structure and a skeleton structure in an inner cavity and can meet the strength and flux requirements of a ceramic hollow fiber membrane.
Abstract:
The invention relates to a high-strength hollow fiber zeolite membrane and its preparation method, characterized in that the support of the high-strength zeolite membrane has a multi-channel hollow fiber configuration. The preparation method comprises first preparing a crystal seed solution, then immersing the dry support with the multi-channel hollow fiber configuration in the crystal seed solution, and extracting and drying the support to obtain a crystal-seeded support; and finally placing the crystal-seeded support in a zeolite membrane synthetic fluid, performing hydrothermal synthesis, and taking out, washing and drying the product to obtain the high-strength hollow fiber zeolite membrane. The multi-channel hollow fiber support can provide high mechanical property, which greatly reduces the depreciation rate of the hollow fiber zeolite membrane equipment during use. Meanwhile, the multi-channel hollow fiber zeolite membrane prepared by the Invention possesses high loading density of permeation flux and membrane module and can reduce the production cost and improve the separation efficiency significantly, and thus lays the foundation for promoting the industrial application of the hollow fiber zeolite membrane.