摘要:
The disclosure discloses a perovskite film layer, a device and a preparation method for effectively improving the efficiency of perovskite optoelectronics. The perovskite film layer consists of a layer with discontinuous, irregularly distributed perovskite crystal grains and an organic insulating layer with a low refractive index embedded between the perovskite crystal grains. The perovskite crystal grains form a plurality of convex portions, and the organic insulating layer forms a plurality of concave portions between the convex portions. By adding an excess of an alkylammonium salt and/or an organic molecule with a specific functional group to perovskite precursor solution, a concave-convex film layer structure is spontaneously formed, and an upper charge transport layer and an electrode form pleated concave-convex structures. Such a special perovskite thin film structure formed by a simple solution method can effectively improve the light-outcoupling efficiency and enhance the performance of the perovskite light-emitting device.
摘要:
The invention relates to a method for preparing a composite metal oxide hollow fibre. A certain stoichiometry of composite metal oxide raw material and a polymer binding agent are added to an organic solvent, and mixed mechanically to obtain an evenly dispersed spinning solution having a suitable viscosity. After defoaming treatment, the spinning solution is extruded through a spinneret and, after undergoing a certain dry spinning process, enters an external coagulation bath; during this period, a phase inversion process occurs and composite metal oxide hollow fibre blanks are formed. The blanks are immersed in the external coagulation bath and the organic solvent is displaced; after natural drying, the blanks undergo a heat treatment process; during this period, polymer burn off, in situ reaction, and in situ sintering processes occur to obtain the composite metal oxide hollow fibre.
摘要:
A nucleotide production process comprises: decomposing an RNA by using a nuclease P1 so as to obtain nucleotides AMP, GMP, CMP and UMP, converting part or all of the nucleotide AMP into a nucleotide IMP by using adenosine deaminase, separating the obtained nucleotide by using an ion exchange resin, and then performing concentration and crystallization to obtain purified nucleotides AMP, GMP, CMP, UMP and IMP or obtain purified nucleotides GMP, CMP, UMP and IMP. The whole biocatalysis production of nucleotides is implemented by using a double-enzyme catalysis method, and high-purity nucleotides are obtained by using an ion resin separation technology and a solvent crystallization method; and the production process is simple and environmentally-friendly, and has low costs, high product safety and purity.
摘要:
Disclosed is a preparation method of the lycopene intermediate 3-methyl-4,4-dialkoxy-1-butaldehyde. The preparation method comprises the following steps: (1) reacting 2-methyl-3,3-dialkoxy-1-halopropane with magnesium powder in the solvent of anhydrous tetrahydrofuran at a temperature of 45˜65° C. to generate a mixture of Grignard reagents under the protection of an inert gas; and (2) adding N,N-disubstituted carboxamide to the mixture of Grignard reagents and reacting at a temperature of 10° C.˜35° C. to obtain 3-methyl-4,4-dialkoxy-1-butaldehyde. The process route of the present invention is simple and direct, the operation is easy, the conditions are mild and the yield is good, and thus the invention has commercial value.
摘要:
The present invention relates to a medium and high-temperature carbon-air cell, which include a solid oxide fuel cell, a CO2 separation membrane and a carbon fuel. The solid oxide fuel cell is a tubular solid oxide fuel cell with one end closed, the carbon fuel is placed inside the tubular solid oxide fuel cell, and the CO2 separation membrane is sealed at the open end of the solid oxide fuel cell. In the carbon-air cell, with carbon as fuel and oxygen in the air as an oxidizing gas, electrochemical reactions occur. The carbon-air cell of the present invention has a novel structural design, and can achieve electricity generation with the solid oxide fuel cell without externally charging a gas, and at the same time, CO2 generated inside the solid oxide fuel cell can be discharged from the system through the CO2 separation membrane in time.
摘要:
Provided in the present invention is a method for synthesizing 2,7-dimethyl-2,4,6-octatriene-1,8-dialdehyde. The synthesis method comprises the following steps: (1) adding acetaldehyde diethyl acetal and ethyl-(1-propenyl)-ether under the effect of a catalyst to produce 1,1,3-triethoxy-2-methyl-butane; (2) pyrolysis synthesizing 1,1,3-triethoxy-2-methyl-butane under the catalytic effects of isoquinoline and p-Toluenesulfonic acid to produce 1-methoxy-2-methyl-1,3-butadiene; (3) dissolving 1-methoxy-2-methyl-1,3-butadiene in anhydrous ethanol solvent for synthesis with a phase transfer catalyst, cetyl-trimethyl ammonium bromide, and a chlorinating agent, trichloroisocyanuric acid, to generate 4,4-diethoxy-3-methyl-1-chloro-butene; (4) combining 4,4-diethoxy-3-methyl-1-chloro-butene with a triphenylphosphine salt to produce a phosphonium salt; and (5) condensing the phosphonium salt under the effects of hydrogen peroxide in conjunction with sodium carbonate solution to generate 1,1,8,8-tetramethyl-2,7-dimethyl-2,4,6-octatriene; then hydrolyzing under acidic conditions to synthesize 2,7-dimethyl-2,4,6-octatriene-1,8-dialdehyde. The present invention has a simple process route, is easy to operate, and has mild conditions, great yield, and great industrial value.
摘要:
The invention relates to a method for preparing a hierarchical porous zeolite membrane and an application thereof, comprising the following steps: a mesoporous structure-directing agent is added to limit the growth of zeolite crystals, and self-assembled in the crystallization process to generate a mesoporous structure. Based on a seed crystal induced secondary nucleation mechanism, this method can realize one-step hydrothermal synthesis of hierarchical porous zeolite membrane with the advantages of mild and controllable synthesis conditions, simple process, good repeatability, reduced energy consumption and cost savings. The hierarchical porous zeolite membrane prepared by the method has good cut-off performance, and the cut-off molecular weight is adjustable between 200 to 500,000 Da.
摘要:
The invention relates to a solvent-free green ammoximation process based on membrane distribution with a procedure as: adding TS-1 catalyst and ketone into a reactor in advance; setting the stirring speed and reaction temperature; after reaching the set temperature, adding a certain amount of ammonia and hydrogen peroxide into a reaction solution, wherein the hydrogen peroxide is fed in a way of using membrane as a distributor, the ammonia is fed in a continuous or semi-continuous manner; oxime is produced upon the reaction. The advantages of the invention include the mild reaction conditions, high reacting efficiency, simple operation and environmentally-friendly process. And there is no need to add any solvent during the reaction process. During the ammoximation reaction, both the conversion rate of the ketone and the selectivity of the oxime can be over 98.0%.
摘要:
A method for preparing a graphene composite membrane on the surface of a tubular support. In the method, a tubular ceramic membrane is used as the support, a layer of graphene material is uniformly prepared on the surface of the support by vacuum suction, and the defect-free tubular graphene composite membrane is obtained by the drying process.
摘要:
The present invention relates to a medium and high-temperature carbon-air cell, which include a solid oxide fuel cell, a CO2 separation membrane and a carbon fuel. The solid oxide fuel cell is a tubular solid oxide fuel cell with one end closed, the carbon fuel is placed inside the tubular solid oxide fuel cell, and the CO2 separation membrane is sealed at the open end of the solid oxide fuel cell. In the carbon-air cell, with carbon as fuel and oxygen in the air as an oxidizing gas, electrochemical reactions occur. The carbon-air cell of the present invention has a novel structural design, and can achieve electricity generation with the solid oxide fuel cell without externally charging a gas, and at the same time, CO2 generated inside the solid oxide fuel cell can be discharged from the system through the CO2 separation membrane in time.