SPIKING DYNAMICAL NEURAL NETWORK FOR PARALLEL PREDICTION OF MULTIPLE TEMPORAL EVENTS
    1.
    发明申请
    SPIKING DYNAMICAL NEURAL NETWORK FOR PARALLEL PREDICTION OF MULTIPLE TEMPORAL EVENTS 审中-公开
    SPIKING动态神经网络并行预测多个时间事件

    公开(公告)号:US20100179935A1

    公开(公告)日:2010-07-15

    申请号:US12353031

    申请日:2009-01-13

    IPC分类号: G06N3/08 G06F15/18

    CPC分类号: G06N3/049

    摘要: A system and method for determining events in a system or process, such as predicting fault events. The method includes providing data from the process, pre-processing data and converting the data to one or more temporal spike trains having spike amplitudes and a spike train length. The spike trains are provided to a dynamical neural network operating as a liquid state machine that includes a plurality of neurons that analyze the spike trains. The dynamical neural network is trained by known data to identify events in the spike train, where the dynamical neural network then analyzes new data to identify events. Signals from the dynamical neural network are then provided to a readout network that decodes the states and predicts the future events.

    摘要翻译: 用于确定系统或过程中的事件的系统和方法,例如预测故障事件。 该方法包括从该过程提供数据,预处理数据并将该数据转换成具有尖峰幅度和尖峰序列长度的一个或多个时间尖峰序列。 尖峰火车被提供到作为液态状态机操作的动力学神经网络,其包括分析尖峰火车的多个神经元。 动态神经网络由已知数据进行训练,以识别尖峰训练中的事件,其中动力神经网络分析新数据以识别事件。 然后将来自动态神经网络的信号提供给解码状态并预测未来事件的读出网络。

    APPARATUS AND METHOD INCLUDING NEURAL NETWORK LEARNING TO DETECT AND CORRECT QUANTUM ERRORS

    公开(公告)号:US20190044542A1

    公开(公告)日:2019-02-07

    申请号:US15972114

    申请日:2018-05-05

    摘要: Apparatus and method for neural network learning to detect and correct quantum errors. For example, one embodiment of an apparatus comprises. For example, one embodiment of an apparatus comprises: a quantum processor comprising one or more data quantum bits (qbits) and one or more ancilla qbits; an error decoder to decode a state of at least one of the ancilla qbits to generate an error syndrome related to one or more qbit errors; a neural network to evaluate the error syndrome and to either identify a known corrective response for correcting the error or to perform unsupervised learning to identify a corrective response to the error syndrome.