Abstract:
An optical transceiver (101) of an optical relay apparatus includes: a coherent reception front-end unit (110) that coherently detects an input optical signal to be input, based on local oscillation light, and outputs the coherently detected first analog electric signal; a coherent transmission front-end unit (120) that coherently modulates a second analog electric signal acquired by turning around the first analog electric signal, based on transmission light, and outputs the coherently modulated output optical signal; and an analog compensation unit (130) that performs analog signal processing on the first analog electric signal in such a way as to compensate for signal quality according to a signal characteristic between an input of the coherent reception front-end unit (110) and an output of the coherent transmission front-end unit (120), and thereby generates the second analog electric signal.
Abstract:
An optical amplifier that amplifies an incident WDM signal and includes cores having an amplification medium, the optical amplifier includes: a wavelength demultiplexer configured to demultiplex the incident WDM signal into wavelength bands and introducing the demultiplexed WDM signals into the cores separately; a wavelength multiplexer configured to multiplex amplified optical signals propagated through the cores and outputting the multiplexed signal; and an wavelength demultiplexing controller configured to monitor an amplification rate of a specific wavelength band of an amplified WDM signal or a scale associated with an amplification rate of a specific wavelength band, demultiplexing, from the incident WDM signal, an optical signal of a wavelength band having relatively-small optical amplification efficiency according to a monitoring result, and controlling demultiplexing performed by the wavelength demultiplexer in such a way as to amplify, with a relatively-large amplification rate, the optical signal of the wavelength band having relatively-small optical amplification efficiency.
Abstract:
The optical transmission system of the present invention includes a multi-core transmission path which includes a plurality of cores, and in which optical signals propagate through the plurality of cores, a first optical repeating means for amplifying the optical signals by individually exciting first multi-core optical amplification mediums, and a second optical repeating means for amplifying the optical signals by collectively exciting second multi-core optical amplification mediums, wherein the first optical repeating means is positioned spaced apart from the second optical repeating means by a distance determined on the basis of either a first transmissible distance due to the first optical repeating means and a second transmissible distance due to the second optical repeating means.
Abstract:
Provided are a monitoring device, a monitoring method, an optical amplifier, and an optical transmission system that are adapted for an increase in the number of cores in a multi-core optical fiber transmission path, and that are suitable for crosstalk monitoring. The monitoring device monitors a multi-core optical fiber transmission path comprising a plurality of use core and at least one or more non-use cores. The monitoring device comprises: an applying means for applying dithering to signal light propagating in the use cores; a monitoring means for monitoring the power of the non-use cores; and a separating means for separating a monitoring result from the monitoring means into power components from the plurality of use cores.
Abstract:
A reception device 20 is configured to include a separation means 21 and a plurality of optical reception means 22. Each optical reception means 22 is configured to further include an optical/electrical conversion means 23 and a band restoration means 24. The separation means 21 separates a multiplexed signal into which signals of respective channels to which spectral shaping that narrows bandwidth to less than or equal to a baud rate is applied are multiplexed at spacings less than or equal to the baud rate on the transmission side into optical signals for the respective channels. Each optical/electrical conversion means 23 converts an optical signal to an electrical signal as a reception signal. Each band restoration means 24 applies processing having inverse characteristics to those of the band narrowing filter processing to the reception signal and restores the band of the reception signal.
Abstract:
A reception device 20 is configured to include a separation means 21 and a plurality of optical reception means 22. Each optical reception means 22 further includes an optical/electrical conversion means 23, a reception coefficient computation means 24, and a band restoration means 25. The separation means 21 separates a multiplexed signal into which signals of respective channels to which spectral shaping that narrows bandwidth to less than or equal to a baud rate is applied as band narrowing filter processing on the transmission side, based on characteristics of a transmission line are multiplexed at spacings less than or equal to the baud rate. Each band restoration means 25 applies processing having inverse characteristics to those of the band narrowing filter processing to a reception signal, based on the band narrowing parameter acquired by the reception coefficient computation means 24 and thereby restores the band of the reception signal.
Abstract:
A digital optical receiver capable of adaptively correcting the linearity of an analog front end unit is provided. The digital optical receiver comprises: a photoelectric conversion unit that converts an optical signal into an analog electric signal and outputs the analog electric signal; an analog front end unit that converts the analog electric signal obtained from the photoelectric conversion unit into a digital electric signal and outputs the digital electric signal; a linearity correction unit that corrects the linearity of the digital electric signal obtained from the analog front end unit; a demodulation processing unit that demodulates a signal by using, as input, the digital electric signal obtained from the linearity correction unit; and a control unit that provides an offset signal to the analog electric signal outputted by the photoelectric conversion unit, obtains monitor information for the result of the provision of the offset signal, and controls the linearity correction unit so that the linearity correction unit corrects the linearity of the digital electric signal obtained from the analog front end unit on the basis of the monitor information.
Abstract:
An optical modulator includes optical waveguides on which phase modulation regions are formed. A drive circuit includes a lower-bit drive unit, an upper-bit drive unit, and a bit splitting unit. The bit splitting unit splits an input digital signal into upper bits and lower bits. The lower-bit drive unit outputs a value obtained by performing D/A conversion on the lower bits to phase modulation regions. The upper-bit drive unit outputs, to phase modulation regions, a value greater than a maximum value of values output from the lower-bit drive unit, or a minimum value of the values output from the lower-bit drive unit, according to a value of the upper bits.
Abstract:
A monitoring control device (1) according to the present embodiment is, for example, a monitoring control device used in a monitoring system that monitors a monitoring target facility by using a distance measurement sensor (5). The monitoring control device (1) includes: a sensing region acquisition unit (3) configured to acquire measurement data indicating a sensing region of the distance measurement sensor (5) provided in order to monitor a monitoring target facility; and a management unit (4) configured to identify a non-monitoring region of the monitoring target facility, based on the sensing region and position data of the distance measurement sensor (5).
Abstract:
A distance measurement apparatus comprises a distance measurement optical signal generation part, a collimating part, a beam diameter change part, an emission direction control part, and a beam diameter change control part. The distance measurement optical signal generation part generates an optical signal for measuring the distance to a target. The collimating part collimates the optical signal. The beam diameter change part is able to change a beam diameter of the collimated light. The emission direction control part controls an emission destination of the collimated light with the diameter changed. The beam diameter change control part controls the changing of the beam diameter by the beam diameter change part according to the emission direction of an outgoing.