Abstract:
Aspects of the present disclosure describe distributed fiber optic sensing (DFOS) systems, methods, and structures that advantageously provide DFOS and WDM communications over amplified, multi-span optical WDM optical telecommunications facilities using all Raman amplification and coding schemes. Our all-Raman amplification operates stably—without isolators—and provides sufficient gain to compensate for fiber span loss for both DFOS signals and WDM channel signals—at the same time. Furthermore, our inventive techniques employ signal coding, such as MB-TGD-OFDR for DAS, and we operate our DFOS operation power at a much lower power level as compared to pulse interrogation techniques. With improved OSNR and reduced power using signal coding along with our distributed Raman amplification, our DFOS systems can co-exist with WDM communication channels on the same amplified multi-span fiber optic links over great distances.
Abstract:
Aspects of the present disclosure are directed to alternative repeater design(s) that advantageously improve signal-to-noise of distributed acoustic sensing (DAS) systems using coherent detection of Rayleigh backscatter in multi-span links including inline amplification that may be employed—for example—in undersea submarine systems. The repeater designs incorporate Rayleigh combine units (RCU) and Rayleigh drop units (RDU) to reduce Rayleigh backscatter loss as Rayleigh signal(s) is/are routed to a link that propagates the backscatter signal in an opposite direction relative to interrogation pulse(s).
Abstract:
Systems and methods for predicting performance of a modulation system are provided. A neural network model is trained using performance information of a source system. The neural network model is modified with transferable knowledge about a target system to be evaluated. The neural network model is tuned using specific characteristics of the target system to create a source-based target model. The target system performance is evaluated using the source-based target model to predict system performance of the target system.
Abstract:
Aspects of the present disclosure describe distributed fiber optic sensing (DFOS) systems, methods, and structures that advantageously overcome problems encountered when operating DFOS systems over operational telecommunications facilities namely, cross-phase modulation, and uneven amplitude profiles through the use of a novel constant amplitude coded DFOS employing out-of-band signaling.
Abstract:
Aspects of the present disclosure describe amplifier dynamics compensation through feedback control for distributed fiber sensing systems, methods, and structures employing Brillouin optical time-domain reflectometry.
Abstract:
Aspects of the present disclosure describe systems, methods. and structures in which a hybrid neural network combining a CNN and several ANNs are shown useful for predicting G-ONSR for Ps-256QAM raw data in deployed SSMF metro networks with 0.27 dB RMSE. As demonstrated, the CNN classifier is trained with 80.96% testing accuracy to identify channel shaping factor. Several ANN regression models are trained to estimate G-OSNR with 0.2 dB for channels with various constellation shaping. Further aspects include the tuning of existing optical networks and the characterization of retrofit/upgraded optical networks to estimate capacity—both aspects employing our inventive hybrid neural network methodology.
Abstract:
Aspects of the present disclosure describe systems, methods and structures and applications of optical fiber sensing. Of significance, systems, methods, and structures according to aspects of the present disclosure may reuse and/or retrofit/upgrade existing optical fiber cables as part of optical fiber sensing that may find important societal application including intrusion detection, road traffic monitoring and infrastructure health monitoring. Combining such optical fiber sensing with artificial intelligence (AI) further enables powerful applications at low(er) cost.
Abstract:
Systems and methods are disclosed for receiving data by radio frequency (RF) mixing to down-convert in-phase and quadrature parts of a photo-detected electrical RF band signal to baseband for data conversion; controlling a mixing phase of a electrical local oscillator (LO) at one or more RF mixing modules; selecting one of the RF sub-bands to be down-converted to baseband after coherent photo-detection; and performing RF sub-band de-multiplexing for ultra-wide band optical digital coherent detection.
Abstract:
A controller for generating higher fiber spectral efficiency without using high-order modulation formats includes operating an interleaved bidirectional transmission IBT with sub-Nyquist optical regime exchange reach for spectral efficiency.
Abstract:
A long haul transmission system uses a digital signal processor DSP instead of an additional optical phase conjugate copier because the optical phase conjugate copier requires high quality optical carrier regeneration to recover the pump and optical PLL to maintain phase matching between signal and pump. Therefore, the use of DSP to process the signal and idler at receiver end greatly simplifies the system setup, increases the system stability and decreases the system cost.