Abstract:
Systems and methods are disclosed for classifying histological tissues or specimens with two phases. In a first phase, the method includes providing off-line training using a processor during which one or more classifiers are trained based on examples, including: finding a split of features into sets of increasing computational cost, assigning a computational cost to each set; training for each set of features a classifier using training examples; training for each classifier, a utility function that scores a usefulness of extracting the next feature set for a given tissue unit using the training examples. In a second phase, the method includes applying the classifiers to an unknown tissue sample with extracting the first set of features for all tissue units; deciding for which tissue unit to extract the next set of features by finding the tissue unit for which a score: S=U−h*C is maximized, where U is a utility function, C is a cost of acquiring the feature and h is a weighting parameter; iterating until a stopping criterion is met or no more feature can be computed; and issuing a tissue-level decision based on a current state.
Abstract:
Systems and methods are disclosed for classifying histological tissues or specimens with two phases. In a first phase, the method includes providing off-line training using a processor during which one or more classifiers are trained based on examples, including: finding a split of features into sets of increasing computational cost, assigning a computational cost to each set; training for each set of features a classifier using training examples; training for each classifier, a utility function that scores a usefulness of extracting the next feature set for a given tissue unit using the training examples. In a second phase, the method includes applying the classifiers to an unknown tissue sample with extracting the first set of features for all tissue units; deciding for which tissue unit to extract the next set of features by finding the tissue unit for which a score: S=U−h*C is maximized, where U is a utility function, C is a cost of acquiring the feature and h is a weighting parameter; iterating until a stopping criterion is met or no more feature can be computed; and issuing a tissue-level decision based on a current state.
Abstract:
Disclosed is a computer implemented method for fully automated tissue diagnosis that trains a region of interest (ROI) classifier in a supervised manner, wherein labels are given only at a tissue level, the training using a multiple-instance learning variant of backpropagation, and trains a tissue classifier that uses the output of the ROI classifier. For a given tissue, the method finds ROIs, extracts feature vectors in each ROI, applies the ROI classifier to each feature vector thereby obtaining a set of probabilities, provides the probabilities to the tissue classifier and outputs a final diagnosis for the whole tissue.
Abstract:
Disclosed is a computer implemented method for fully automated tissue diagnosis that trains a region of interest (ROI) classifier in a supervised manner, wherein labels are given only at a tissue level, the training using a multiple-instance learning variant of backpropagation, and trains a tissue classifier that uses the output of the ROI classifier. For a given tissue, the method finds ROIs, extracts feature vectors in each ROI, applies the ROI classifier to each feature vector thereby obtaining a set of probabilities, provides the probabilities to the tissue classifier and outputs a final diagnosis for the whole tissue.