Abstract:
Various embodiments are generally directed an apparatus and method for receiving an event notification for a pair of cluster nodes having a first cluster node and a second cluster node, the event notification indicating an occurrence of a takeover event or a giveback event. Further, various embodiments may include suspending copying of information from a source logical unit to a target logical unit, transferring one or more processes from the first cluster node to the second cluster node and resuming importation of information from the source logical unit to the target logical unit.
Abstract:
Data consistency and availability can be provided at the granularity of logical storage objects in storage solutions that use storage virtualization in clustered storage environments. To ensure consistency of data across different storage elements, synchronization is performed across the different storage elements. Changes to data are synchronized across storage elements in different clusters by propagating the changes from a primary logical storage object to a secondary logical storage object. To satisfy the strictest RPOs while maintaining performance, change requests are intercepted prior to being sent to a filesystem that hosts the primary logical storage object and propagated to a different managing storage element associated with the secondary logical storage object.
Abstract:
Various embodiments are generally directed an apparatus and method for receiving an event notification for a pair of cluster nodes having a first cluster node and a second cluster node, the event notification indicating an occurrence of a takeover event or a giveback event. Further, various embodiments may include suspending copying of information from a source logical unit to a target logical unit, transferring one or more processes from the first cluster node to the second cluster node and resuming importation of information from the source logical unit to the target logical unit.
Abstract:
Improved techniques for disaster recover within storage area networks are disclosed. Embodiments include replicating a LIF of a primary cluster on a secondary cluster. LIF configuration information is extracted from the primary cluster. A peer node from a secondary cluster is located. One or more ports are located on the located peer node that match a connectivity of the LIF from the primary cluster. One or more ports are identified based upon one or more filtering criteria to generate a candidate port list. A port from the candidate port list is selected based at least upon a load of the port. Other embodiments are described and claimed.
Abstract:
Data consistency and availability can be provided at the granularity of logical storage objects in storage solutions that use storage virtualization in clustered storage environments. To ensure consistency of data across different storage elements, synchronization is performed across the different storage elements. Changes to data are synchronized across storage elements in different clusters by propagating the changes from a primary logical storage object to a secondary logical storage object. To satisfy the strictest RPOs while maintaining performance, change requests are intercepted prior to being sent to a filesystem that hosts the primary logical storage object and propagated to a different managing storage element associated with the secondary logical storage object.
Abstract:
Improved techniques for disaster recover within storage area networks are disclosed. Embodiments include replicating a LIF of a primary cluster on a secondary cluster. LIF configuration information is extracted from the primary cluster. A peer node from a secondary cluster is located. One or more ports are located on the located peer node that match a connectivity of the LIF from the primary cluster. One or more ports are identified based upon one or more filtering criteria to generate a candidate port list. A port from the candidate port list is selected based at least upon a load of the port. Other embodiments are described and claimed.
Abstract:
Improved techniques for disaster recover within storage area networks are disclosed. Embodiments include replicating a LIF of a primary cluster on a secondary cluster. LIF configuration information is extracted from the primary cluster. A peer node from a secondary cluster is located. One or more ports are located on the located peer node that match a connectivity of the LIF from the primary cluster. One or more ports are identified based upon one or more filtering criteria to generate a candidate port list. A port from the candidate port list is selected based at least upon a load of the port. Other embodiments are described and claimed.
Abstract:
Techniques to managing non-disruptive SAN availability in a partitioned cluster comprising one or more components configured to determine whether to separate a cluster into two or more partitions, notify one or more responsive cluster nodes to separate the cluster into a first partition and a second partition, update one or more access states, notify the host that access states of one or more network paths has been updated, and provide the one or more access states. Other embodiments are described and claimed.
Abstract:
Data consistency and availability can be provided at the granularity of logical storage objects in storage solutions that use storage virtualization in clustered storage environments. To ensure consistency of data across different storage elements, synchronization is performed across the different storage elements. Changes to data are synchronized across storage elements in different clusters by propagating the changes from a primary logical storage object to a secondary logical storage object. To satisfy the strictest RPOs while maintaining performance, change requests are intercepted prior to being sent to a filesystem that hosts the primary logical storage object and propagated to a different managing storage element associated with the secondary logical storage object.
Abstract:
Techniques to managing non-disruptive SAN availability in a partitioned cluster comprising one or more components configured to determine whether to separate a cluster into two or more partitions, notify one or more responsive cluster nodes to separate the cluster into a first partition and a second partition, update one or more access states, notify the host that access states of one or more network paths has been updated, and provide the one or more access states. Other embodiments are described and claimed.