Abstract:
A sensor element includes a base part containing a solid electrolyte as a constituent material; at least one internal space into which a measurement gas is introduced; and at least one pump cell including an internal space electrode disposed to face the internal space, an out-of-space pump electrode disposed at a location other than the internal space, and a portion of the base part located between these electrodes, the internal space electrode includes a noble metal, the solid electrolyte, and a pore, and, in the internal space electrode, a ratio of a length of a boundary of a first region formed of the base part or the solid electrolyte contiguous with the base part and a second region occupied by the noble metal and the pore to a length of a boundary of the solid electrolyte and the internal space electrode is 1.1 or more.
Abstract:
A gas sensor detects a specific gas concentration in a measurement-object gas and includes an element body and one or more pump cells. The element body includes an oxygen-ion-conductive solid electrolyte layer and is provided with a measurement-object gas flow section therein. The measurement-object gas flow section receives a measurement-object gas and allows the measurement-object gas to flow therethrough. The one or more pump cells each have an inner electrode and an outer pump electrode and pump out oxygen from around the inner electrode to around the outer pump electrode. The inner electrode is disposed in the measurement-object gas flow section and contains a catalytically-active noble metal. At least one pump cell of the one or more pump cells pumps out the oxygen by applying a repeatedly on-off controlled pump current between a measurement electrode and the outer pump electrode.
Abstract:
A controller of the gas sensor can perform diagnostic processing of diagnosing a situation of control to the gas sensor in a case that the gas sensor in an operation state is determined to satisfy a predetermined diagnostic condition and adjustment processing of adjusting a condition for controlling the gas sensor in accordance with a result of diagnosis. In the diagnostic processing, a main pump voltage and a diagnostic threshold as a value of a voltage not causing decomposition of NOx in the main pump cell are compared. In the adjustment processing, temperature adjustment processing to cause, in a case that the main pump voltage is diagnosed to be equal to the threshold or more, the main pump voltage to be less than the threshold, at least in a way that the heater part increases the element driving temperature in the operation state by a predetermined increase amount is performed.
Abstract:
A method for setting a temperature rising profile of a sensor element in the activation of a gas sensor is capable of quickly increasing the temperature of the sensor element while reliably preventing or reducing the occurrence of a crack. The method includes Weibull plotting a failure rate that is a cumulative frequency at which a crack occurs as a result of the rapid temperature rising of the sensor element, identifying a temperature-rising-rate upper limit from the plotting results, determining, based on the temperature-rising-rate upper limit, a temperature-rise upper limit curve, and determining, as an appropriate function, a temperature rising profile in a range in which a temperature rising rate at an appropriate temperature does not exceed values on the temperature-rising-rate upper limit curve for the temperature.
Abstract:
Provided is a gas sensor free from an unbonded space being in communication with an internal space. A gas sensor, which includes a sensor element including a plurality of layers that are bonded and formed of an oxygen-ion conductive solid electrolyte and which reduces a predetermined gas component of a measurement gas to identify a concentration of the gas component on the basis of a current flowing through the solid electrolyte, includes an internal space in which a measurement gas having the ability to reduce the gas component is provided. Of the plurality of layers, an interlaminar bonding layer, which bonds a layer forming a bottom surface of the internal space and a layer forming a side surface of the internal space, projects into the internal space.
Abstract:
A gas sensor that detects a specific gas concentration in a measurement-object gas, the gas sensor includes: a sensor element having an element body provided with a measurement-object gas flow section therein, the measurement-object gas flow section introducing the measurement-object gas, a measurement electrode disposed in the measurement-object gas flow section, a measurement-object-gas side electrode provided on the element body, a reference electrode, a reference-gas introduction section that causes a reference gas to flow to the reference electrode, and a reference-gas adjustment pump cell constituted by including the measurement-object-gas side electrode and the reference electrode; and a controller that performs a moisture-concentration decrease process of controlling the reference-gas adjustment pump cell so that oxygen is pumped out from a periphery of the reference electrode to a periphery of the measurement-object-gas side electrode to decrease a moisture concentration around the reference electrode.
Abstract:
A sensor element includes a base part including a plurality of oxygen-ion-conductive solid electrolyte layers stacked; a measurement-object gas flow part for introduction and flow of a measurement-object gas through one end part in a longitudinal direction of the base part; a main pump cell including an inner main pump electrode disposed on an inner surface of the measurement-object gas flow part, and an outer pump electrode; a target-gas-decomposing pump cell including a target-gas-decomposing pump electrode disposed at a position farther from the one end part than the inner main pump electrode, and an outer pump electrode; a residual-oxygen-measuring pump cell including a residual-oxygen-measuring electrode disposed at a position farther from the one end part than the inner main pump electrode, and an outer pump electrode; and a reference electrode. The target-gas-decomposing pump electrode comprises a metal material that has catalytic activity of decomposing a target gas to be measured.
Abstract:
A sensor element includes: a base part containing an oxygen-ion conductive solid electrolyte as a constituent material; at least one internal space into which a measurement gas is introduced; and at least one pump cell including an internal electrode disposed to face the at least one internal space, an out-of-space pump electrode disposed at a location other than the at least one internal space, and a portion of the base part located between these electrodes, the internal electrode includes: an upper layer consisting of a noble metal, the solid electrolyte, and a pore; and a lower layer consisting of the noble metal and the solid electrolyte, and a volume ratio of the solid electrolyte in the lower layer is greater than a volume ratio of the solid electrolyte in the upper layer.
Abstract:
A sensor element includes: a first inner space into which a measurement gas is introduced from outside; a second inner space communicated with the first inner space; a main pump cell constituted by an inner pump electrode facing the first inner space, an external pump electrode on a surface of the sensor element, and a solid electrolyte located therebetween; a measurement electrode facing the second inner space and functioning as a reduction catalyst for NOx; and a measurement pump cell constituted by the measurement electrode, the external pump electrode, and a solid electrolyte located therebetween. The inner pump electrode is a cermet made of an Au—Pt alloy containing Au ranging from 0.6 wt % to 1.4 wt % and ZrO2, and has a thickness ranging from 5 μm to 30 μm, a porosity ranging from 5% to 40%, and an area ranging from 5 mm2 to 20 mm2.
Abstract:
First inner gas holes 134a and first outer gas holes 144a of a gas sensor are formed so that the following conditions are satisfied: a first-inner-hole count Nin≧3, 0