摘要:
Provided is a display device that can be made thin, lightweight, and flexible, has no problems of cracks and peeling caused by thermal stress, and is excellent in dimension stability and the like. The display device includes: a supporting base including a polyimide film; and a gas barrier layer formed on the supporting base, in which the polyimide film has a transmittance of 80% or more in a wavelength region of from 440 nm to 780 nm, and a coefficient of thermal expansion of 15 ppm/K or less, and has a difference in coefficient of thermal expansion from the gas barrier layer of 10 ppm/K or less.
摘要:
Provided is a display device that can be made thin, lightweight, and flexible, has no problems of cracks and peeling caused by thermal stress, and is excellent in dimension stability and the like. The display device includes: a supporting base including a polyimide film; and a gas barrier layer formed on the supporting base, in which the polyimide film has a transmittance of 80% or more in a wavelength region of from 440 nm to 780 nm, and a coefficient of thermal expansion of 15 ppm/K or less, and has a difference in coefficient of thermal expansion from the gas barrier layer of 10 ppm/K or less.
摘要:
Provided is a display device that can be made thin, lightweight, and flexible, has no problems of cracks and peeling caused by thermal stress, and is excellent in dimension stability and the like. The display device includes: a supporting base including a polyimide film; and a gas barrier layer formed on the supporting base, in which the polyimide film has a transmittance of 80% or more in a wavelength region of from 440 nm to 780 nm, and a coefficient of thermal expansion of 15 ppm/K or less, and has a difference in coefficient of thermal expansion from the gas barrier layer of 10 ppm/K or less.
摘要:
Provided are: a supporting carbon material for a solid polymer fuel cell, said supporting carbon material making it possible to produce a high-performance solid polymer fuel cell in which there is little decrease in power generation performance as a result of repeated battery load fluctuation that inevitably occurs during operation of the solid polymer fuel cell; and a catalyst metal particle-supporting carbon material. The present invention relates to: a supporting carbon material for a solid polymer fuel cell, said supporting carbon material being a porous carbon material in which the specific surface area of mesopores having a pore diameter of 2-50 nm according to nitrogen adsorption measurement is 600-1,600 m2/g, the relative intensity ratio (IG′/IG) of the peak intensity (IG′) of the G-band 2,650-2,700 cm−1 range to the peak intensity (IG) of the G-band 1,550-1,650 cm−1 range in the Raman spectrum is 0.8-2.2, and the peak position of the G′-band is 2,660-2,670 cm−1; and a catalyst metal particle-supporting carbon material.
摘要:
Provided are a supporting carbon material for a solid polymer fuel cell and a metal-catalyst-particle-supporting carbon material that, when used as a carrier for a solid polymer fuel cell catalyst, have excellent power generation performance in high-humidity conditions, which are conditions in which solid polymer fuel cells are operated. A supporting carbon material for a solid polymer fuel cell and a metal-catalyst-particle-supporting carbon material characterized in being a porous carbon material, the hydrogen content being 0.004-0.010% by mass, the nitrogen adsorption BET specific surface area being 600 m2/g-1500 m2/g, and the relative intensity ratio (ID/IG) between the peak intensity (ID) in the range of 1200-1400 cm−1 known as the D-band and the peak intensity (IG) in the range of 1500-1700 cm−1 known as the G-band, obtained from the Raman spectrum, being 1.0-2.0.
摘要:
Provided is a display device that can be made thin, lightweight, and flexible, has no problems of cracks and peeling caused by thermal stress, and is excellent in dimension stability and the like. The display device includes: a supporting base including a polyimide film; and a gas barrier layer formed on the supporting base, in which the polyimide film has a transmittance of 80% or more in a wavelength region of from 440 nm to 780 nm, and a coefficient of thermal expansion of 15 ppm/K or less, and has a difference in coefficient of thermal expansion from the gas barrier layer of 10 ppm/K or less.
摘要:
Provided is a display device that can be made thin, lightweight, and flexible, has no problems of cracks and peeling caused by thermal stress, and is excellent in dimension stability and the like. The display device includes: a supporting base including a polyimide film; and a gas barrier layer formed on the supporting base, in which the polyimide film has a transmittance of 80% or more in a wavelength region of from 440 nm to 780 nm, and a coefficient of thermal expansion of 15 ppm/K or less, and has a difference in coefficient of thermal expansion from the gas barrier layer of 10 ppm/K or less.
摘要:
Provided is a display device that can be made thin, lightweight, and flexible, has no problems of cracks and peeling caused by thermal stress, and is excellent in dimension stability and the like. The display device includes: a supporting base including a polyimide film; and a gas barrier layer formed on the supporting base, in which the polyimide film has a transmittance of 80% or more in a wavelength region of from 440 nm to 780 nm, and a coefficient of thermal expansion of 15 ppm/K or less, and has a difference in coefficient of thermal expansion from the gas barrier layer of 10 ppm/K or less.