PATH PERCEPTION DIVERSITY AND REDUNDANCY IN AUTONOMOUS MACHINE APPLICATIONS

    公开(公告)号:US20230004164A1

    公开(公告)日:2023-01-05

    申请号:US17940664

    申请日:2022-09-08

    Abstract: In various examples, a path perception ensemble is used to produce a more accurate and reliable understanding of a driving surface and/or a path there through. For example, an analysis of a plurality of path perception inputs provides testability and reliability for accurate and redundant lane mapping and/or path planning in real-time or near real-time. By incorporating a plurality of separate path perception computations, a means of metricizing path perception correctness, quality, and reliability is provided by analyzing whether and how much the individual path perception signals agree or disagree. By implementing this approach—where individual path perception inputs fail in almost independent ways—a system failure is less statistically likely. In addition, with diversity and redundancy in path perception, comfortable lane keeping on high curvature roads, under severe road conditions, and/or at complex intersections, as well as autonomous negotiation of turns at intersections, may be enabled.

    PATH PERCEPTION DIVERSITY AND REDUNDANCY IN AUTONOMOUS MACHINE APPLICATIONS

    公开(公告)号:US20200249684A1

    公开(公告)日:2020-08-06

    申请号:US16781893

    申请日:2020-02-04

    Abstract: In various examples, a path perception ensemble is used to produce a more accurate and reliable understanding of a driving surface and/or a path there through. For example, an analysis of a plurality of path perception inputs provides testability and reliability for accurate and redundant lane mapping and/or path planning in real-time or near real-time. By incorporating a plurality of separate path perception computations, a means of metricizing path perception correctness, quality, and reliability is provided by analyzing whether and how much the individual path perception signals agree or disagree. By implementing this approach—where individual path perception inputs fail in almost independent ways—a system failure is less statistically likely. In addition, with diversity and redundancy in path perception, comfortable lane keeping on high curvature roads, under severe road conditions, and/or at complex intersections, as well as autonomous negotiation of turns at intersections, may be enabled.

    PATH PERCEPTION DIVERSITY AND REDUNDANCY IN AUTONOMOUS MACHINE APPLICATIONS

    公开(公告)号:US20240339035A1

    公开(公告)日:2024-10-10

    申请号:US18745370

    申请日:2024-06-17

    CPC classification number: G08G1/167 G06F18/23 G06N3/08 G06V20/588

    Abstract: In various examples, a path perception ensemble is used to produce a more accurate and reliable understanding of a driving surface and/or a path there through. For example, an analysis of a plurality of path perception inputs provides testability and reliability for accurate and redundant lane mapping and/or path planning in real-time or near real-time. By incorporating a plurality of separate path perception computations, a means of metricizing path perception correctness, quality, and reliability is provided by analyzing whether and how much the individual path perception signals agree or disagree. By implementing this approach—where individual path perception inputs fail in almost independent ways—a system failure is less statistically likely. In addition, with diversity and redundancy in path perception, comfortable lane keeping on high curvature roads, under severe road conditions, and/or at complex intersections, as well as autonomous negotiation of turns at intersections, may be enabled.

    Path perception diversity and redundancy in autonomous machine applications

    公开(公告)号:US11520345B2

    公开(公告)日:2022-12-06

    申请号:US16781893

    申请日:2020-02-04

    Abstract: In various examples, a path perception ensemble is used to produce a more accurate and reliable understanding of a driving surface and/or a path there through. For example, an analysis of a plurality of path perception inputs provides testability and reliability for accurate and redundant lane mapping and/or path planning in real-time or near real-time. By incorporating a plurality of separate path perception computations, a means of metricizing path perception correctness, quality, and reliability is provided by analyzing whether and how much the individual path perception signals agree or disagree. By implementing this approach—where individual path perception inputs fail in almost independent ways—a system failure is less statistically likely. In addition, with diversity and redundancy in path perception, comfortable lane keeping on high curvature roads, under severe road conditions, and/or at complex intersections, as well as autonomous negotiation of turns at intersections, may be enabled.

Patent Agency Ranking