REFLECTION DENOISING IN RAY-TRACING APPLICATIONS

    公开(公告)号:US20240257439A1

    公开(公告)日:2024-08-01

    申请号:US18612293

    申请日:2024-03-21

    Abstract: Disclosed approaches may leverage the actual spatial and reflective properties of a virtual environment—such as the size, shape, and orientation of a bidirectional reflectance distribution function (BRDF) lobe of a light path and its position relative to a reflection surface, a virtual screen, and a virtual camera—to produce, for a pixel, an anisotropic kernel filter having dimensions and weights that accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface. In order to accomplish this, geometry may be computed that corresponds to a projection of a reflection of the BRDF lobe below the surface along a view vector to the pixel. Using this approach, the dimensions of the anisotropic filter kernel may correspond to the BRDF lobe to accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface.

    Reflection denoising in ray-tracing applications

    公开(公告)号:US10776985B2

    公开(公告)日:2020-09-15

    申请号:US16355214

    申请日:2019-03-15

    Abstract: Disclosed approaches may leverage the actual spatial and reflective properties of a virtual environment—such as the size, shape, and orientation of a bidirectional reflectance distribution function (BRDF) lobe of a light path and its position relative to a reflection surface, a virtual screen, and a virtual camera—to produce, for a pixel, an anisotropic kernel filter having dimensions and weights that accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface. In order to accomplish this, geometry may be computed that corresponds to a projection of a reflection of the BRDF lobe below the surface along a view vector to the pixel. Using this approach, the dimensions of the anisotropic filter kernel may correspond to the BRDF lobe to accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface.

    REFLECTION DENOISING IN RAY-TRACING APPLICATIONS

    公开(公告)号:US20190287294A1

    公开(公告)日:2019-09-19

    申请号:US16355214

    申请日:2019-03-15

    Abstract: Disclosed approaches may leverage the actual spatial and reflective properties of a virtual environment—such as the size, shape, and orientation of a bidirectional reflectance distribution function (BRDF) lobe of a light path and its position relative to a reflection surface, a virtual screen, and a virtual camera—to produce, for a pixel, an anisotropic kernel filter having dimensions and weights that accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface. In order to accomplish this, geometry may be computed that corresponds to a projection of a reflection of the BRDF lobe below the surface along a view vector to the pixel. Using this approach, the dimensions of the anisotropic filter kernel may correspond to the BRDF lobe to accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface.

    REFLECTION DENOISING IN RAY-TRACING APPLICATIONS

    公开(公告)号:US20220327765A1

    公开(公告)日:2022-10-13

    申请号:US17852132

    申请日:2022-06-28

    Abstract: Disclosed approaches may leverage the actual spatial and reflective properties of a virtual environment—such as the size, shape, and orientation of a bidirectional reflectance distribution function (BRDF) lobe of a light path and its position relative to a reflection surface, a virtual screen, and a virtual camera—to produce, for a pixel, an anisotropic kernel filter having dimensions and weights that accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface. In order to accomplish this, geometry may be computed that corresponds to a projection of a reflection of the BRDF lobe below the surface along a view vector to the pixel. Using this approach, the dimensions of the anisotropic filter kernel may correspond to the BRDF lobe to accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface.

    REFLECTION DENOISING IN RAY-TRACING APPLICATIONS

    公开(公告)号:US20200349755A1

    公开(公告)日:2020-11-05

    申请号:US16935431

    申请日:2020-07-22

    Abstract: Disclosed approaches may leverage the actual spatial and reflective properties of a virtual environment—such as the size, shape, and orientation of a bidirectional reflectance distribution function (BRDF) lobe of a light path and its position relative to a reflection surface, a virtual screen, and a virtual camera—to produce, for a pixel, an anisotropic kernel filter having dimensions and weights that accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface. In order to accomplish this, geometry may be computed that corresponds to a projection of a reflection of the BRDF lobe below the surface along a view vector to the pixel. Using this approach, the dimensions of the anisotropic filter kernel may correspond to the BRDF lobe to accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface.

    QUANTIZING AUTOENCODERS IN A NEURAL NETWORK

    公开(公告)号:US20250103049A1

    公开(公告)日:2025-03-27

    申请号:US18654351

    申请日:2024-05-03

    Abstract: The performance of a neural network is improved by applying quantization to data at various points in the network. In an embodiment, a neural network includes two paths. A quantization is applied to each path, such that when an output from each path is combined, further quantization is not required. In an embodiment, the neural network is an autoencoder that includes at least one skip connection. In an embodiment, the system determines a set of quantization parameters based on the characteristics of the data in the primary path and in the skip connection, such that both network paths produce output data in the same fixed point format. As a result, the data from both network paths can be combined without requiring an additional quantization.

    Reflection denoising in ray-tracing applications

    公开(公告)号:US11941745B2

    公开(公告)日:2024-03-26

    申请号:US17852132

    申请日:2022-06-28

    Abstract: Disclosed approaches may leverage the actual spatial and reflective properties of a virtual environment—such as the size, shape, and orientation of a bidirectional reflectance distribution function (BRDF) lobe of a light path and its position relative to a reflection surface, a virtual screen, and a virtual camera—to produce, for a pixel, an anisotropic kernel filter having dimensions and weights that accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface. In order to accomplish this, geometry may be computed that corresponds to a projection of a reflection of the BRDF lobe below the surface along a view vector to the pixel. Using this approach, the dimensions of the anisotropic filter kernel may correspond to the BRDF lobe to accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface.

    Reflection denoising in ray-tracing applications

    公开(公告)号:US11373359B2

    公开(公告)日:2022-06-28

    申请号:US16935431

    申请日:2020-07-22

    Abstract: Disclosed approaches may leverage the actual spatial and reflective properties of a virtual environment—such as the size, shape, and orientation of a bidirectional reflectance distribution function (BRDF) lobe of a light path and its position relative to a reflection surface, a virtual screen, and a virtual camera—to produce, for a pixel, an anisotropic kernel filter having dimensions and weights that accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface. In order to accomplish this, geometry may be computed that corresponds to a projection of a reflection of the BRDF lobe below the surface along a view vector to the pixel. Using this approach, the dimensions of the anisotropic filter kernel may correspond to the BRDF lobe to accurately reflect the spatial characteristics of the virtual environment as well as the reflective properties of the surface.

    QUANTIZING AUTOENCODERS IN A NEURAL NETWORK
    10.
    发明申请

    公开(公告)号:US20200272162A1

    公开(公告)日:2020-08-27

    申请号:US16282210

    申请日:2019-02-21

    Abstract: The performance of a neural network is improved by applying quantization to data at various points in the network. In an embodiment, a neural network includes two paths. A quantization is applied to each path, such that when an output from each path is combined, further quantization is not required. In an embodiment, the neural network is an autoencoder that includes at least one skip connection. In an embodiment, the system determines a set of quantization parameters based on the characteristics of the data in the primary path and in the skip connection, such that both network paths produce output data in the same fixed point format. As a result, the data from both network paths can be combined without requiring an additional quantization.

Patent Agency Ranking