Learning based camera pose estimation from images of an environment

    公开(公告)号:US10692244B2

    公开(公告)日:2020-06-23

    申请号:US16137064

    申请日:2018-09-20

    Abstract: A deep neural network (DNN) system learns a map representation for estimating a camera position and orientation (pose). The DNN is trained to learn a map representation corresponding to the environment, defining positions and attributes of structures, trees, walls, vehicles, etc. The DNN system learns a map representation that is versatile and performs well for many different environments (indoor, outdoor, natural, synthetic, etc.). The DNN system receives images of an environment captured by a camera (observations) and outputs an estimated camera pose within the environment. The estimated camera pose is used to perform camera localization, i.e., recover the three-dimensional (3D) position and orientation of a moving camera, which is a fundamental task in computer vision with a wide variety of applications in robot navigation, car localization for autonomous driving, device localization for mobile navigation, and augmented/virtual reality.

    Learning-Based Camera Pose Estimation From Images of an Environment

    公开(公告)号:US20190108651A1

    公开(公告)日:2019-04-11

    申请号:US16137064

    申请日:2018-09-20

    Abstract: A deep neural network (DNN) system learns a map representation for estimating a camera position and orientation (pose). The DNN is trained to learn a map representation corresponding to the environment, defining positions and attributes of structures, trees, walls, vehicles, walls, etc. The DNN system learns a map representation that is versatile and performs well for many different environments (indoor, outdoor, natural, synthetic, etc.). The DNN system receives images of an environment captured by a camera (observations) and outputs an estimated camera pose within the environment. The estimated camera pose is used to perform camera localization, i.e., recover the three-dimensional (3D) position and orientation of a moving camera, which is a fundamental task in computer vision with a wide variety of applications in robot navigation, car localization for autonomous driving, device localization for mobile navigation, and augmented/virtual reality.

    Learning-based camera pose estimation from images of an environment

    公开(公告)号:US10964061B2

    公开(公告)日:2021-03-30

    申请号:US16872752

    申请日:2020-05-12

    Abstract: A deep neural network (DNN) system learns a map representation for estimating a camera position and orientation (pose). The DNN is trained to learn a map representation corresponding to the environment, defining positions and attributes of structures, trees, walls, vehicles, etc. The DNN system learns a map representation that is versatile and performs well for many different environments (indoor, outdoor, natural, synthetic, etc.). The DNN system receives images of an environment captured by a camera (observations) and outputs an estimated camera pose within the environment. The estimated camera pose is used to perform camera localization, i.e., recover the three-dimensional (3D) position and orientation of a moving camera, which is a fundamental task in computer vision with a wide variety of applications in robot navigation, car localization for autonomous driving, device localization for mobile navigation, and augmented/virtual reality.

    LEARNING-BASED CAMERA POSE ESTIMATION FROM IMAGES OF AN ENVIRONMENT

    公开(公告)号:US20200273207A1

    公开(公告)日:2020-08-27

    申请号:US16872752

    申请日:2020-05-12

    Abstract: A deep neural network (DNN) system learns a map representation for estimating a camera position and orientation (pose). The DNN is trained to learn a map representation corresponding to the environment, defining positions and attributes of structures, trees, walls, vehicles, etc. The DNN system learns a map representation that is versatile and performs well for many different environments (indoor, outdoor, natural, synthetic, etc.). The DNN system receives images of an environment captured by a camera (observations) and outputs an estimated camera pose within the environment. The estimated camera pose is used to perform camera localization, i.e., recover the three-dimensional (3D) position and orientation of a moving camera, which is a fundamental task in computer vision with a wide variety of applications in robot navigation, car localization for autonomous driving, device localization for mobile navigation, and augmented/virtual reality.

Patent Agency Ranking