-
公开(公告)号:US11880927B2
公开(公告)日:2024-01-23
申请号:US18320446
申请日:2023-05-19
Applicant: NVIDIA Corporation
Inventor: Xueting Li , Sifei Liu , Kihwan Kim , Shalini De Mello , Jan Kautz
CPC classification number: G06T15/04 , G06T7/579 , G06T7/70 , G06T15/20 , G06T17/20 , G06T2207/10016 , G06T2207/20084 , G06T2207/30244
Abstract: A three-dimensional (3D) object reconstruction neural network system learns to predict a 3D shape representation of an object from a video that includes the object. The 3D reconstruction technique may be used for content creation, such as generation of 3D characters for games, movies, and 3D printing. When 3D characters are generated from video, the content may also include motion of the character, as predicted based on the video. The 3D object construction technique exploits temporal consistency to reconstruct a dynamic 3D representation of the object from an unlabeled video. Specifically, an object in a video has a consistent shape and consistent texture across multiple frames. Texture, base shape, and part correspondence invariance constraints may be applied to fine-tune the neural network system. The reconstruction technique generalizes well—particularly for non-rigid objects.
-
公开(公告)号:US11508076B2
公开(公告)日:2022-11-22
申请号:US17156406
申请日:2021-01-22
Applicant: NVIDIA Corporation
Inventor: Zhaoyang Lv , Kihwan Kim , Deqing Sun , Alejandro Jose Troccoli , Jan Kautz
IPC: G06T7/254 , G06T7/90 , G06T7/50 , G06N3/08 , G06T7/194 , G06T3/00 , G06T7/70 , G06T7/60 , G06T7/11 , G06N5/04 , G06T7/285 , G06T7/215
Abstract: A neural network model receives color data for a sequence of images corresponding to a dynamic scene in three-dimensional (3D) space. Motion of objects in the image sequence results from a combination of a dynamic camera orientation and motion or a change in the shape of an object in the 3D space. The neural network model generates two components that are used to produce a 3D motion field representing the dynamic (non-rigid) part of the scene. The two components are information identifying dynamic and static portions of each image and the camera orientation. The dynamic portions of each image contain motion in the 3D space that is independent of the camera orientation. In other words, the motion in the 3D space (estimated 3D scene flow data) is separated from the motion of the camera.
-
公开(公告)号:US20220270318A1
公开(公告)日:2022-08-25
申请号:US17734244
申请日:2022-05-02
Applicant: NVIDIA Corporation
Inventor: Xueting Li , Sifei Liu , Kihwan Kim , Shalini De Mello , Jan Kautz
Abstract: A three-dimensional (3D) object reconstruction neural network system learns to predict a 3D shape representation of an object from a video that includes the object. The 3D reconstruction technique may be used for content creation, such as generation of 3D characters for games, movies, and 3D printing. When 3D characters are generated from video, the content may also include motion of the character, as predicted based on the video. The 3D object construction technique exploits temporal consistency to reconstruct a dynamic 3D representation of the object from an unlabeled video. Specifically, an object in a video has a consistent shape and consistent texture across multiple frames. Texture, base shape, and part correspondence invariance constraints may be applied to fine-tune the neural network system. The reconstruction technique generalizes well—particularly for non-rigid objects.
-
公开(公告)号:US10984545B2
公开(公告)日:2021-04-20
申请号:US16439539
申请日:2019-06-12
Applicant: NVIDIA Corporation
Inventor: Jinwei Gu , Kihwan Kim , Chao Liu
Abstract: Techniques for estimating depth for a video stream captured by a monocular image sensor are disclosed. A sequence of image frames are captured by the monocular image sensor. A first neural network is configured to process at least a portion of the sequence of image frames to generate a depth probability volume. The depth probability volume includes a plurality of probability maps corresponding to a number of discrete depth candidate locations over a range of depths defined for the scene. The depth probability volume can be updated using a second neural network that is configured to generate adaptive gain parameters to integrate the DPVs over time. A third neural network is configured to refine the updated depth probability volume from a lower resolution to a higher resolution that matches the original resolution of the sequence of image frames. A depth map can be calculated based on the depth probability volume.
-
公开(公告)号:US10922793B2
公开(公告)日:2021-02-16
申请号:US16353195
申请日:2019-03-14
Applicant: NVIDIA Corporation
Inventor: Seung-Hwan Baek , Kihwan Kim , Jinwei Gu , Orazio Gallo , Alejandro Jose Troccoli , Ming-Yu Liu , Jan Kautz
Abstract: Missing image content is generated using a neural network. In an embodiment, a high resolution image and associated high resolution semantic label map are generated from a low resolution image and associated low resolution semantic label map. The input image/map pair (low resolution image and associated low resolution semantic label map) lacks detail and is therefore missing content. Rather than simply enhancing the input image/map pair, data missing in the input image/map pair is improvised or hallucinated by a neural network, creating plausible content while maintaining spatio-temporal consistency. Missing content is hallucinated to generate a detailed zoomed in portion of an image. Missing content is hallucinated to generate different variations of an image, such as different seasons or weather conditions for a driving video.
-
公开(公告)号:US20190319851A1
公开(公告)日:2019-10-17
申请号:US16351312
申请日:2019-03-12
Applicant: NVIDIA Corporation
Inventor: Benjamin David Eckart , Kihwan Kim , Jan Kautz
Abstract: Point cloud registration sits at the core of many important and challenging 3D perception problems including autonomous navigation, object/scene recognition, and augmented reality (AR). A new registration algorithm is presented that achieves speed and accuracy by registering a point cloud to a representation of a reference point cloud. A target point cloud is registered to the reference point cloud by iterating through a number of cycles of an EM algorithm where, during an Expectation step, each point in the target point cloud is associated with a node of a hierarchical tree data structure and, during a Maximization step, an estimated transformation is determined based on the association of the points with corresponding nodes of the hierarchical tree data structure. The estimated transformation is determined by solving a minimization problem associated with a sum, over a number of mixture components, over terms related to a Mahalanobis distance.
-
公开(公告)号:US20190108651A1
公开(公告)日:2019-04-11
申请号:US16137064
申请日:2018-09-20
Applicant: NVIDIA Corporation
Inventor: Jinwei Gu , Samarth Manoj Brahmbhatt , Kihwan Kim , Jan Kautz
Abstract: A deep neural network (DNN) system learns a map representation for estimating a camera position and orientation (pose). The DNN is trained to learn a map representation corresponding to the environment, defining positions and attributes of structures, trees, walls, vehicles, walls, etc. The DNN system learns a map representation that is versatile and performs well for many different environments (indoor, outdoor, natural, synthetic, etc.). The DNN system receives images of an environment captured by a camera (observations) and outputs an estimated camera pose within the environment. The estimated camera pose is used to perform camera localization, i.e., recover the three-dimensional (3D) position and orientation of a moving camera, which is a fundamental task in computer vision with a wide variety of applications in robot navigation, car localization for autonomous driving, device localization for mobile navigation, and augmented/virtual reality.
-
公开(公告)号:US20230290038A1
公开(公告)日:2023-09-14
申请号:US18320446
申请日:2023-05-19
Applicant: NVIDIA Corporation
Inventor: Xueting Li , Sifei Liu , Kihwan Kim , Shalini De Mello , Jan Kautz
CPC classification number: G06T15/04 , G06T7/579 , G06T7/70 , G06T17/20 , G06T15/20 , G06T2207/30244 , G06T2207/20084 , G06T2207/10016
Abstract: A three-dimensional (3D) object reconstruction neural network system learns to predict a 3D shape representation of an object from a video that includes the object. The 3D reconstruction technique may be used for content creation, such as generation of 3D characters for games, movies, and 3D printing. When 3D characters are generated from video, the content may also include motion of the character, as predicted based on the video. The 3D object construction technique exploits temporal consistency to reconstruct a dynamic 3D representation of the object from an unlabeled video. Specifically, an object in a video has a consistent shape and consistent texture across multiple frames. Texture, base shape, and part correspondence invariance constraints may be applied to fine-tune the neural network system. The reconstruction technique generalizes well—particularly for non-rigid objects.
-
公开(公告)号:US11546568B1
公开(公告)日:2023-01-03
申请号:US16811356
申请日:2020-03-06
Applicant: Nvidia Corporation
Inventor: Jae Shin Yoon , Jan Kautz , Kihwan Kim
IPC: H04N13/128 , H04N13/00
Abstract: Apparatuses, systems, and techniques are presented to perform monocular view synthesis of a dynamic scene. Single and multi-view depth information can be determined for a collection of images of a dynamic scene, and a blender network can be used to combine image features for foreground, background, and missing image regions using fused depth maps inferred form the single and multi-view depth information.
-
公开(公告)号:US11354847B2
公开(公告)日:2022-06-07
申请号:US16945455
申请日:2020-07-31
Applicant: NVIDIA Corporation
Inventor: Xueting Li , Sifei Liu , Kihwan Kim , Shalini De Mello , Jan Kautz
Abstract: A three-dimensional (3D) object reconstruction neural network system learns to predict a 3D shape representation of an object from a video that includes the object. The 3D reconstruction technique may be used for content creation, such as generation of 3D characters for games, movies, and 3D printing. When 3D characters are generated from video, the content may also include motion of the character, as predicted based on the video. The 3D object construction technique exploits temporal consistency to reconstruct a dynamic 3D representation of the object from an unlabeled video. Specifically, an object in a video has a consistent shape and consistent texture across multiple frames. Texture, base shape, and part correspondence invariance constraints may be applied to fine-tune the neural network system. The reconstruction technique generalizes well—particularly for non-rigid objects.
-
-
-
-
-
-
-
-
-