FAIRNESS-BASED NEURAL NETWORK MODEL TRAINING USING REAL AND GENERATED DATA

    公开(公告)号:US20240144000A1

    公开(公告)日:2024-05-02

    申请号:US18307227

    申请日:2023-04-26

    CPC classification number: G06N3/08

    Abstract: A neural network model is trained for fairness and accuracy using both real and synthesized training data, such as images. During training a first sampling ratio between the real and synthesized training data is optimized. The first sampling ratio may comprise a value for each group (or attribute), where each value is optimized. A second sampling ratio defines relative amounts of training data that are used for each one of the groups. Furthermore, a neural network model accuracy and a fairness metric are both used for updating the first and second sampling ratios during training iterations. The neural network model may be trained using different classes of training data. The second sampling ratio may vary for each class.

    SYSTEM AND METHOD FOR RETRIEVAL-BASED CONTROLLABLE MOLECULE GENERATION

    公开(公告)号:US20240029836A1

    公开(公告)日:2024-01-25

    申请号:US18353773

    申请日:2023-07-17

    CPC classification number: G16C20/90 G16C20/70

    Abstract: A machine learning framework is described for performing generation of candidate molecules for, e.g., drug discovery or other applications. The framework utilizes a pre-trained encoder-decoder model to interface between representations of molecules and embeddings for those molecules in a latent space. A fusion module is located between the encoder and decoder and is used to fuse an embedding for an input molecule with embeddings for one or more exemplary molecules selected from a database that is constructed according to a design criteria. The fused embedding is decoded using the decoder to generate a candidate molecule. The fusion module is trained to reconstruct a nearest neighbor to the input molecule from the database based on the sample of exemplary molecules. An iterative approach may be used during inference to dynamically update the database to include newly generated candidate molecules.

    IMAGE GENERATION USING ONE OR MORE NEURAL NETWORKS

    公开(公告)号:US20230015253A1

    公开(公告)日:2023-01-19

    申请号:US17505384

    申请日:2021-10-19

    Abstract: Apparatuses, systems, and techniques are presented to generate one or more images comprising one or more objects based, at least in part, on one or more dynamically configurable attributes of the one or objects. In at least one embodiment, one or more images comprising one or more objects can be generated based, at least in part, on one or more dynamically configurable attributes of the one or objects.

    System and method for retrieval-based controllable molecule generation

    公开(公告)号:US12159694B2

    公开(公告)日:2024-12-03

    申请号:US18353773

    申请日:2023-07-17

    Abstract: A machine learning framework is described for performing generation of candidate molecules for, e.g., drug discovery or other applications. The framework utilizes a pre-trained encoder-decoder model to interface between representations of molecules and embeddings for those molecules in a latent space. A fusion module is located between the encoder and decoder and is used to fuse an embedding for an input molecule with embeddings for one or more exemplary molecules selected from a database that is constructed according to a design criteria. The fused embedding is decoded using the decoder to generate a candidate molecule. The fusion module is trained to reconstruct a nearest neighbor to the input molecule from the database based on the sample of exemplary molecules. An iterative approach may be used during inference to dynamically update the database to include newly generated candidate molecules.

    CONDITIONAL DIFFUSION MODEL FOR DATA-TO-DATA TRANSLATION

    公开(公告)号:US20240273682A1

    公开(公告)日:2024-08-15

    申请号:US18431527

    申请日:2024-02-02

    CPC classification number: G06T5/60 G06T5/50

    Abstract: Image restoration generally involves recovering a target clean image from a given image having noise, blurring, or other degraded features. Current image restoration solutions typically include a diffusion model that is trained for image restoration by a forward process that progressively diffuses data to noise, and then by learning in a reverse process to generate the data from the noise. However, the forward process relies on Gaussian noise to diffuse the original data, which has little or no structural information corresponding to the original data versus learning from the degraded image itself which is much more structurally informative compared to the random Gaussian noise. Similar problems also exist for other data-to-data translation tasks. The present disclosure trains a data translation conditional diffusion model from diffusion bridge(s) computed between a first version of the data and a second version of the data, which can yield a model that can provide interpretable generation, sampling efficiency, and reduced processing time.

Patent Agency Ranking