摘要:
The present invention relates to methods for determining a treatment regimen beyond surgical removal of tumor tissue for node negative or node positive breast cancer patient. The method comprises measuring the levels of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) in a subject, preferably a tumor; and, based upon the values, predicting the expected benefit including disease-free survival and/or overall survival for the patient without treatment (beyond the surgical removal of tumor tissue) or with a particular treatment and using that information to select a treatment regimen for the subject. High risk subject is identified by high levels of both uPA and PAI-1, high level of uPA and low level of PAI-1 or, low level of uPA and high level of PAI-1. Treatment options for high risk subjects include, but are not limited to, adjuvant CMF chemotherapy, adjuvant non-CMF chemotherapy, adjuvant endocrine therapy, adjuvant anthracyclin-containing chemotherapy, radiation therapy, and gene therapy. Treatment options for low risk subjects include, but are not limited to, no treatment, radiation, and adjuvant endocrine therapy.
摘要:
A method for training a neural network in order to optimize the structure of the neural network includes identifying and eliminating synapses that have no significant influence on the curve of the risk function. First and second sending neurons are selected that are connected to the same receiving neuron by respective first and second synapses. It is assumed that there is a correlation of response signals from the first and second sending neurons to the same receiving neuron. The first synapse is interrupted and a weight of the second synapse is adapted in its place. The output signals of the changed neural network are compared with the output signals of the unchanged neural network. If the comparison result does not exceed a predetermined level, the first synapse is eliminated, thereby simplifying the structure of the neural network.
摘要:
The invention is directed to a method for training at least one learning-capable system comprising the steps of providing a predetermined training data set corresponding to a predetermined number of subjects comprising a predetermined input data set and a predetermined outcome data set, augmenting the input data set and/or the outcome data set, and training each learning-capable system using the augmented input data set and/or the augmented outcome data set.
摘要:
A method of checking the quality of traffic disturbance reporting processes records a total number of traffic disturbance reports generated by a traffic disturbance reporting process, which traffic disturbance reports each relate to at least one defined reporting time period and at least one defined reporting route segment, over a predefined analyzing time period and a predefined analyzing range. A number of reported conditions is formed from the total number of traffic disturbance reports, and a first statistical frequency distribution of the reported conditions is determined. A total number of reference observations are recorded, which each relate to at least one defined observation time period and at least one defined observation route segment, within the analyzing time period and within the analyzing range. A number of actual conditions is formed from the total number of reference observations and a second statistical frequency distribution of the actual conditions is determined. The second statistical frequency distribution is compared with the first statistical frequency distribution, and a quality indicator for the traffic disturbance reporting process is derived from the result of the comparison.
摘要:
A method of checking the quality of traffic disturbance reporting processes records a total number of traffic disturbance reports generated by a traffic disturbance reporting process, which traffic disturbance reports each relate to at least one defined reporting time period and at least one defined reporting route segment, over a predefined analyzing time period and a predefined analyzing range. A number of reported conditions is formed from the total number of traffic disturbance reports, and a first statistical frequency distribution of the reported conditions is determined. A total number of reference observations are recorded, which each relate to at least one defined observation time period and at least one defined observation route segment, within the analyzing time period and within the analyzing range. A number of actual conditions is formed from the total number of reference observations and a second statistical frequency distribution of the actual conditions is determined. The second statistical frequency distribution is compared with the first statistical frequency distribution, and a quality indicator for the traffic disturbance reporting process is derived from the result of the comparison.