摘要:
A plasma display panel includes: pairs of electrodes having first electrode and second electrode which are arranged in parallel with each other; first substrate having dielectric layer formed so that the dielectric layer can cover the pairs of electrodes; and second substrate having third electrode which is arranged crossing the pairs of electrodes, and the plasma display panel further includes: floating electrodes, protruding onto a discharge space provided on dielectric layer at positions respectively corresponding to first electrode and second electrode, wherein floating electrodes are opposed to each other. Due to the above composition, the discharge starting voltage is reduced and the drive voltage is decreased. Accordingly, the light emitting efficiency is enhanced.
摘要:
A plasma display panel includes: pairs of electrodes having first electrode and second electrode which are arranged in parallel with each other; first substrate having dielectric layer formed so that the dielectric layer can cover the pairs of electrodes; and second substrate having third electrode which is arranged crossing the pairs of electrodes, and the plasma display panel further includes: floating electrodes, protruding onto a discharge space provided on dielectric layer at positions respectively corresponding to first electrode and second electrode, wherein floating electrodes are opposed to each other. Due to the above composition, the discharge starting voltage is reduced and the drive voltage is decreased. Accordingly, the light emitting efficiency is enhanced.
摘要:
The present invention aims to provide a PDP apparatus and a driving method for the same which can improve display quality by reducing a peak value of a discharge current flowing in scan and sustain electrodes in a sustain period, without an increase in manufacturing cost. This is achieved as follows. A driving unit 20 applies a sustain data pulse 320 to a plurality of third electrodes in a sustain period T3. Here, a voltage waveform of the sustain data pulse 320 starts to rise after a voltage of each of pulses 300 and 310 applied to a pair of a scan electrode SCN and a sustain electrode SUS reaches a predetermined level. Furthermore, the sustain data pulse 320 rises at a different timing at least from a sustain data pulse 320 applied to an adjacent data electrode.
摘要:
The present invention aims to provide a PDP apparatus and a driving method for the same which can improve display quality by reducing a peak value of a discharge current flowing in scan and sustain electrodes in a sustain period, without an increase in manufacturing cost. This is achieved as follows. A driving unit 20 applies a sustain data pulse 320 to a plurality of third electrodes in a sustain period T3. Here, a voltage waveform of the sustain data pulse 320 starts to rise after a voltage of each of pulses 300 and 310 applied to a pair of a scan electrode SCN and a sustain electrode SUS reaches a predetermined level. Furthermore, the sustain data pulse 320 rises at a different timing at least from a sustain data pulse 320 applied to an adjacent data electrode.
摘要:
Provided is a plasma display apparatus having largely improved luminous efficiency while restraining cost increase of its driving circuit. A PDP 1 has an outer case formed by attaching a front panel 10 and a back panel 40, with barrier ribs 30 formed therebetween. Besides, a space created between the front panel 10 and the back panel 40 is filled with a rare gas such as Ne, Xe, and He. On the back panel 40, data-sustain electrodes 52 and data electrodes 51 are aligned alternately and parallel to each other. In a write period, a data driving circuit 4 performs selective data voltage output to the data electrodes 51 based on image data inputted for each subfield line by line. In a sustain period, a data-sustain driving circuit 5 performs collective data-sustain pulse application to the data-sustain electrodes 52.
摘要:
The present invention aims to provide a PDP apparatus, where a sustain data pulse is applied to data electrodes during a sustain period, having high display quality,and capable of displaying a dark screen image vividly with high contrast without using an error diffusion method, as well as to provide a method of driving the PDP apparatus. In order to achieve the above object, the method of driving the PDP apparatus according to the present invention, during the sustain period, detects an average luminance of a screen image to be displayed, and sets a voltage waveform of a sustain data pulse to be applied to the data electrodes according to the detected average luminance, thereby modulating a luminance of the screen image.
摘要:
A PDP capable of lowering a discharge initiating voltage with a weak discharge always stabilized during an initialization period even if a Xe partial pressure ratio to a total pressure in discharge gas is increased, improving an image quality with the occurrence of an initializing bright point prevented, preventing the lowering of a light emission efficiency and brightness, and improving brightness; and a production method for simply producing the PDP. The PDP comprises a front panel and a rear panel disposed facing each other with a discharge space provided between them. A fluorescent layer is formed in the area on the discharge space side of the rear panel, and a fluorescent film as a high γ portion is formed in part of the area of its surface. The fluorescent film is formed of a material higher in secondary electron emission coefficient γ than a fluorescent material constituting the fluorescent layer. Part of the surface of the fluorescent layer is covered with the fluorescent film, with the other part facing the discharge space.
摘要:
Provided is a PDP in which a weak discharge is always generated in a stable manner to lower the firing voltage, the generation of the reset luminous points is restricted to improve the image quality, and reduction of the luminous efficiency and reduction of the luminance are restricted to improve the luminance. A manufacturing method of the PDP is also provided.The PDP includes a front panel and a back panel arranged to face each other with a discharge space between the panels. A phosphor layer is provided in an area of the back panel that faces toward the discharge space. Part of the surface of the phosphor layer is covered with a phosphor-coating film as a high γ member. The phosphor-coating film is made of a material having a higher secondary electron emission coefficient than a material of the phosphor layer. The high γ member and the remaining are of the surface of the phosphor layer are exposed to the discharge space.
摘要:
A technology effective for improving the luminous efficiency, lifetime, and color temperature of a PDP having phosphor layers of three colors is disclosed. A PDP comprises a plurality of narrow tubes (60) arrayed on a substrate (51). In each narrow tube (60), one of phosphor layers (61R; 61B, 61G) is formed and a discharge gas is contained. The compositions and pressures of the discharge gases are set within appropriate ranges respectively corresponding to the phosphor layers (61R, 61B, 61G). Consequently, the PDP can have a lengthened life-time and an improved luminous efficiency. Reductions of variation in breakdown voltage and adjustment of color temperature are also possible with this constitution.
摘要:
A technology effective for improving the luminous efficiency, lifetime, and color temperature of a PDP having phosphor layers of three colors is disclosed. A PDP comprises a plurality of narrow tubes (60) arrayed on a substrate (51). In each narrow tube (60), one of phosphor layers (61R; 61B, 61G) is formed and a discharge gas is contained. The compositions and pressures of the discharge gases are set within appropriate ranges respectively corresponding to the phosphor layers (61R, 61B, 61G). Consequently, the PDP can have a lengthened life-time and an improved luminous efficiency. Reductions of variation in breakdown voltage and adjustment of color temperature are also possible with this constitution.