摘要:
A method of performing statistical timing analysis of a logic design, including effects of signal coupling, includes performing a deterministic analysis to determine deterministic coupling information for at least one aggressor/victim net pair of the logic design. Additionally, the method includes performing a statistical timing analysis in which the deterministic coupling information for the at least one aggressor/victim net pair is combined with statistical values of the statistical timing analysis to determine a statistical effective capacitance of a victim of the aggressor/victim net pair. Furthermore, the method includes using the statistical effective capacitance to determine timing data used in the statistical timing analysis.
摘要:
A method of performing statistical timing analysis of a logic design, including effects of signal coupling, includes performing a deterministic analysis to determine deterministic coupling information for at least one aggressor/victim net pair of the logic design. Additionally, the method includes performing a statistical timing analysis in which the deterministic coupling information for the at least one aggressor/victim net pair is combined with statistical values of the statistical timing analysis to determine a statistical effective capacitance of a victim of the aggressor/victim net pair. Furthermore, the method includes using the statistical effective capacitance to determine timing data used in the statistical timing analysis.
摘要:
A method of timing closure for integrated circuit designs uses multiple timing runs which distribute the frequency of identified fails per timing corner (between starting timing corners and remaining timing corners) to maximize efficiency in timing analysis. More specifically, the method closes timing for a chosen set of starting timing corners, verifies the remaining timing corners are orthogonal to the starting timing corners, closes timing for the remaining timing corners using multi-corner analysis, and verifies that all timing corners have positive slack margin.
摘要:
A system and method of performing microelectronic chip timing analysis, wherein the method comprises identifying failing timing paths in a chip; prioritizing the failing timing paths in the chip according to a size of random noise events occurring in each timing path; attributing a slack credit statistic for all but highest order random noise events occurring in each timing path; and calculating a worst case timing path scenario based on the prioritized failing timing paths and the slack credit statistic. Preferably, the random noise events comprise non-clock events. Moreover, the random noise events may comprise victim/aggressor net groups belonging to different regularity groups. Preferably, the size of random noise events comprises coupled noise delta delays due to the random noise events occurring in the chip.
摘要:
A method of estimating an inductance delay includes determining a resistance-capacitance (RC) delay with resistances and capacitances of a network and estimating an inductance delay of the network by determining a propagation delay of an electromagnetic (EM) field across wires of the network. Additionally, the method includes determining if the RC delay is below a specified threshold and adding the estimated inductance delay to the RC delay to determine a total time to propagate voltage swings through the network if the RC delay is below the specified threshold.
摘要:
A method of estimating an inductance delay includes determining a resistance-capacitance (RC) delay with resistances and capacitances of a network and estimating an inductance delay of the network by determining a propagation delay of an electromagnetic (EM) field across wires of the network. Additionally, the method includes determining if the RC delay is below a specified threshold and adding the estimated inductance delay to the RC delay to determine a total time to propagate voltage swings through the network if the RC delay is below the specified threshold.
摘要:
In one embodiment, the invention is a method and apparatus for static timing analysis in the presence of a coupling event and process variation. One embodiment of a method for computing a statistical change in delay and slew due to a coupling event between two adjacent nets in an integrated circuit design includes conducting a statistical timing analysis of the integrated circuit design, computing a statistical overlap window between the adjacent nets, where the statistical timing window represents a period of time during which signals on the adjacent nets can switch contemporaneously and computing the statistical change of delay due to the coupling event, in accordance with the statistical overlap window.
摘要:
In one embodiment, the invention is a method and apparatus for static timing analysis in the presence of a coupling event and process variation. One embodiment of a method for computing a statistical change in delay and slew due to a coupling event between two adjacent nets in an integrated circuit design includes conducting a statistical timing analysis of the integrated circuit design, computing a statistical overlap window between the adjacent nets, where the statistical timing window represents a period of time during which signals on the adjacent nets can switch contemporaneously and computing the statistical change of delay due to the coupling event, in accordance with the statistical overlap window.
摘要:
A method for incrementally calculating the impact of coupling noise on the timing of an integrated circuit (IC) having a plurality of logic stages by performing an initial timing analysis on the IC to provide a first determination of the impact of coupling noise on the timing. One or more design changes to the IC are then performed. In response to the design change, the impact of the coupling noise to the timing is calculated on the logic stage where the change was made and on the logic stages downstream thereof. The results of the calculations are then inputted to a timing analysis tool to adjust the delay and slew of each logic stage where the design change was made and to the logic stages downstream thereof.
摘要:
A method for incrementally calculating the impact of coupling noise on the timing of an integrated circuit (IC) having a plurality of logic stages by performing an initial timing analysis on the IC to provide a first determination of the impact of coupling noise on the timing. One or more design changes to the IC are then performed. In response to the design change, the impact of the coupling noise to the timing is calculated on the logic stage where the change was made and on the logic stages downstream thereof. The results of the calculations are then inputted to a timing analysis tool to adjust the delay and slew of each logic stage where the design change was made and to the logic stages downstream thereof.