摘要:
A method of constructing a forwarding database for a data communications network comprising a plurality of network components and supporting at least first and second topologies having one or more common network components is described. The forwarding database includes a plurality of entries providing forwarding information for data destined for a related network component. The method comprises the step, performed at a constructing network component, of deriving topology dependent forwarding information for data destined for a network component. The method further comprises the step of including the topology dependent forwarding information at the related forwarding database entry.
摘要:
In one embodiment, a provider edge packet switching device of a provider network is configured with different Internet Protocol (IP) forwarding information bases (FIBs) depending on whether the forwarding information base is associated with core-facing ingress packet traffic (e.g., packet traffic from the provider network) or customer-facing ingress packet traffic (e.g., packet traffic from a customer network). In the latter case of customer-facing ingress packet traffic, the customer-facing forwarding information base includes load balancing lookup results for load balancing traffic between a customer edge packet switching device and through the provider network. In the case of core-facing ingress packet traffic, the core-facing forwarding information base includes a lookup result for forwarding traffic to a customer edge packet switching device, and does not include the above-referenced load balancing lookup result information.
摘要:
In one embodiment, a provider edge packet switching device of a provider network is configured with different Internet Protocol (IP) forwarding information bases (FIBs) depending on whether the forwarding information base is associated with core-facing ingress packet traffic (e.g., packet traffic from the provider network) or customer-facing ingress packet traffic (e.g., packet traffic from a customer network). In the latter case of customer-facing ingress packet traffic, the customer-facing forwarding information base includes load balancing lookup results for load balancing traffic between a customer edge packet switching device and through the provider network. In the case of core-facing ingress packet traffic, the core-facing forwarding information base includes a lookup result for forwarding traffic to a customer edge packet switching device, and does not include the above-referenced load balancing lookup result information.
摘要:
A bridge device (4) for connecting a plurality of communication networks (1-3) around which data is transmitted in frames which include control information defining at least the identity of a destination for data in the frame, each network having at least one end station (8-12). The bridge device comprises a corresponding plurality of data coupling units (13,14) for connection to respective ones of the networks (1-3), each data coupling unit including receive (13) and transmit (14) interfaces for respectively receiving data from and transmitting data onto the connected network. A common store (17) is connected to all the data coupling units for receiving data being transmitted from one network to another. A controller (16,28) controls the routing of data through the bridge device (4) via the common store (17), the controller causing incoming data to be routed to a destination network before the data has been fully stored in the common store, if predetermined conditions are satisfied, the controller being adapted to monitor the amount of free space in the common storage means and to prevent the supply of data to the common store if the available free space is less than a predetermined amount.
摘要:
A bridge device (4) for connecting a plurality of communication networks (1-3) around which data is transmitted in frames which include control information defining at least the identity of a destination for data in the frame, each network having at least one end station (8-12). The bridge device comprises a corresponding plurality of data coupling units (13,14) for connection to respective ones of the networks (1-3), each data coupling unit including receive (13) and transmit (14) interfaces for respectively receiving data from and transmitting data onto the connected network. A common store (17) is connected to all the data coupling units for receiving data being transmitted from one network to another. A controller (16,28) controls the routing of data through the bridge device (4) via the common store (17), the controller causing incoming data to be routed to a destination network before the data has been fully stored in the common store, if predetermined conditions are satisfied, the controller being adapted to monitor the amount of free space in the common storage means and to prevent the supply of data to the common store if the available free space is less than a predetermined amount.