Abstract:
Methods, systems, and computer program products for preventing non-detectable data loss during site switchover are disclosed. A computer-implemented method may include receiving a request to perform a switchover from a first node to a second node, determining whether to place a storage volume involved in the switchover in a suspended state, setting the storage volume in the suspended state based on determining that the storage volume is to be placed in the suspended state, and maintaining the storage volume in the suspended state after completing the switchover. In an example, the storage volume may be placed in a suspended state based on examining a volume-specific attribute indicating whether the storage volume is to be suspended when involved in a switchover. In one example, each storage volume involved in a switchover may be placed in a suspended state when indicated as part of a switchover request.
Abstract:
Methods, systems, and computer program products for providing deferred replication of recovery information at site switchover are disclosed. A computer-implemented method may include receiving a first copy of logged data for storage volumes of a disaster recovery (DR) partner at a remote site from the DR partner, receiving a request to perform a site switchover from the remote site to the local site, receiving a second copy of logged data for the storage volumes from a local high availability (HA) partner in response to the switchover, and recovering the storage volumes locally by applying one or more of the copies of logged data to corresponding mirrored storage volumes at the local site.
Abstract:
Methods, systems, and computer program products for preventing non-detectable data loss during site switchover are disclosed. A computer-implemented method may include receiving a request to perform a switchover from a first node to a second node, determining whether to place a storage volume involved in the switchover in a suspended state, setting the storage volume in the suspended state based on determining that the storage volume is to be placed in the suspended state, and maintaining the storage volume in the suspended state after completing the switchover. In an example, the storage volume may be placed in a suspended state based on examining a volume-specific attribute indicating whether the storage volume is to be suspended when involved in a switchover. In one example, each storage volume involved in a switchover may be placed in a suspended state when indicated as part of a switchover request.
Abstract:
Methods, systems, and computer program products for preventing non-detectable data loss during site switchover are disclosed. A computer-implemented method may include receiving a request to perform a switchover from a first node to a second node, determining whether to place a storage volume involved in the switchover in a suspended state, setting the storage volume in the suspended state based on determining that the storage volume is to be placed in the suspended state, and maintaining the storage volume in the suspended state after completing the switchover. In an example, the storage volume may be placed in a suspended state based on examining a volume-specific attribute indicating whether the storage volume is to be suspended when involved in a switchover. In one example, each storage volume involved in a switchover may be placed in a suspended state when indicated as part of a switchover request.
Abstract:
A network storage server includes a tool for detecting and fixing errors while the network storage server remains online (available for servicing client requests), which includes enabling a user to approve or disapprove remedial changes before the changes are committed. The technique bypasses the usual consistency point process for new or modified data blocks representing potential remedial changes. At a consistency point, dirty data blocks representing the potential remedial changes are written to a change log file residing outside the volume. The modified data blocks are written in sequential order to logical blocks of the change log file. In response to a user input indicating that a potential change should be committed, the corresponding modified data blocks are read from the change log file in the order in which they were written to the change log file, and they are written to persistent storage in that order.
Abstract:
Methods, systems, and computer program products for preventing non-detectable data loss during site switchover are disclosed. A computer-implemented method may include receiving a request to perform a switchover from a first node to a second node, determining whether to place a storage volume involved in the switchover in a suspended state, setting the storage volume in the suspended state based on determining that the storage volume is to be placed in the suspended state, and maintaining the storage volume in the suspended state after completing the switchover. In an example, the storage volume may be placed in a suspended state based on examining a volume-specific attribute indicating whether the storage volume is to be suspended when involved in a switchover. In one example, each storage volume involved in a switchover may be placed in a suspended state when indicated as part of a switchover request.
Abstract:
Methods, systems, and computer program products for preventing non-detectable data loss during site switchover are disclosed. A computer-implemented method may include receiving a request to perform a switchover from a first node to a second node, determining whether to place a storage volume involved in the switchover in a suspended state, setting the storage volume in the suspended state based on determining that the storage volume is to be placed in the suspended state, and maintaining the storage volume in the suspended state after completing the switchover. In an example, the storage volume may be placed in a suspended state based on examining a volume-specific attribute indicating whether the storage volume is to be suspended when involved in a switchover. In one example, each storage volume involved in a switchover may be placed in a suspended state when indicated as part of a switchover request.
Abstract:
Methods, systems, and computer program products for preventing non-detectable data loss during site switchover are disclosed. A computer-implemented method may include receiving a request to perform a switchover from a first node to a second node, determining whether to place a storage volume involved in the switchover in a suspended state, setting the storage volume in the suspended state based on determining that the storage volume is to be placed in the suspended state, and maintaining the storage volume in the suspended state after completing the switchover. In an example, the storage volume may be placed in a suspended state based on examining a volume-specific attribute indicating whether the storage volume is to be suspended when involved in a switchover. In one example, each storage volume involved in a switchover may be placed in a suspended state when indicated as part of a switchover request.
Abstract:
Methods, systems, and computer program products for providing deferred replication of recovery information at site switchover are disclosed. A computer-implemented method may include receiving a first copy of logged data for storage volumes of a disaster recovery (DR) partner at a remote site from the DR partner, receiving a request to perform a site switchover from the remote site to the local site, receiving a second copy of logged data for the storage volumes from a local high availability (HA) partner in response to the switchover, and recovering the storage volumes locally by applying one or more of the copies of logged data to corresponding mirrored storage volumes at the local site.
Abstract:
Methods, systems, and computer program products for preventing non-detectable data loss during site switchover are disclosed. A computer-implemented method may include receiving a request to perform a switchover from a first node to a second node, determining whether to place a storage volume involved in the switchover in a suspended state, setting the storage volume in the suspended state based on determining that the storage volume is to be placed in the suspended state, and maintaining the storage volume in the suspended state after completing the switchover. In an example, the storage volume may be placed in a suspended state based on examining a volume-specific attribute indicating whether the storage volume is to be suspended when involved in a switchover. In one example, each storage volume involved in a switchover may be placed in a suspended state when indicated as part of a switchover request.