Abstract:
Methods, non-transitory machine readable media, and computing devices that more securely facilitate data protection workflows are disclosed. With this technology, identification information for primary inbound and outbound queues is extracted from a registration token received from an administrator device. A registration request is inserted into the primary outbound queue using the identification information and one or more communication networks that are external to a data center. The primary inbound queue is polled using the identification information and the communication networks to retrieve messages from a backup service computing device that instantiated the queues and generated the registration token. Accordingly, nodes in a data center can communicate more securely with a cloud backup service via queues and without exposing any HTTP ports to the backup service. Advantageously, the backup service can learn the topology of a storage cluster and manage data protection workflows via communications with one of the constituent nodes.
Abstract:
Methods, non-transitory machine readable media, and computing devices that more securely facilitate data protection workflows are disclosed. With this technology, identification information for primary inbound and outbound queues is extracted from a registration token received from an administrator device. A registration request is inserted into the primary outbound queue using the identification information and one or more communication networks that are external to a data center. The primary inbound queue is polled using the identification information and the communication networks to retrieve messages from a backup service computing device that instantiated the queues and generated the registration token. Accordingly, nodes in a data center can communicate more securely with a cloud backup service via queues and without exposing any HTTP ports to the backup service. Advantageously, the backup service can learn the topology of a storage cluster and manage data protection workflows via communications with one of the constituent nodes.
Abstract:
Methods, non-transitory machine readable media, and computing devices that more securely facilitate data protection workflows are disclosed. With this technology, identification information for primary inbound and outbound queues is extracted from a registration token received from an administrator device. A registration request is inserted into the primary outbound queue using the identification information and one or more communication networks that are external to a data center. The primary inbound queue is polled using the identification information and the communication networks to retrieve messages from a backup service computing device that instantiated the queues and generated the registration token. Accordingly, nodes in a data center can communicate more securely with a cloud backup service via queues and without exposing any HTTP ports to the backup service. Advantageously, the backup service can learn the topology of a storage cluster and manage data protection workflows via communications with one of the constituent nodes.
Abstract:
A method, non-transitory computer readable medium, and device that providing a unified storage for backup and disaster recovery includes capturing a recent snapshot of one or more file systems associated with a client computing device. The captured recent snapshot is stored in a secondary storage device. One or more changes to one or more files in the one or more file systems are determined by comparing the stored recent snapshot against an initial snapshot. A response to a disaster recovery request or a backup request based on the determined one or more changes to the one or more file systems is provided.