Abstract:
One or more techniques and/or systems are disclosed for enabling communication between a SAS communication port of a SAS communication component and multiple storage devices. In a first example, a first SAS to SATA bridge chip and a second SAS to SATA bridge chip may be configured to route data from a SAS communication component to multiple storage devices. In a second example, a SAS to SATA bridge chip and a port multiplier may be configured to route data from a SAS communication component to multiple storage devices. In a third example, a four port SAS to SATA bridge comprising two SAS ports and two SATA ports may be configured to route data from a SAS communication component to multiple storage devices. Supporting two or more storage devices with a single SAS communication port allows storage enclosures to increase storage capacity, while decreasing cost per slot.
Abstract:
Methods, non-transitory computer readable media, and computing devices that determine when a storage element of a data storage device has failed. Address(es) mapped to the failed storage element are identified, when the determining indicates that the storage element has failed. Data corresponding to the address(es) is regenerated according to a data loss protection and recovery scheme (e.g., a RAID scheme). The regenerated data is written to other storage element(s) of the data storage device in order to remap the address(es) to the other storage element(s). This technology allows a data storage device (e.g., an SSD) to be repaired in-place following a failure of storage element(s) (e.g., a die) of the data storage device. Advantageously, entire data storage devices do not have to be failed with this technology as a result of a failure of an individual storage element, thereby reducing data storage device failure rates and associated overhead.
Abstract:
Methods, non-transitory computer readable media, and computing devices that determine when a storage element of a data storage device has failed. Address(es) mapped to the failed storage element are identified, when the determining indicates that the storage element has failed. Data corresponding to the address(es) is regenerated according to a data loss protection and recovery scheme (e.g., a RAID scheme). The regenerated data is written to other storage element(s) of the data storage device in order to remap the address(es) to the other storage element(s). This technology allows a data storage device (e.g., an SSD) to be repaired in-place following a failure of storage element(s) (e.g., a die) of the data storage device. Advantageously, entire data storage devices do not have to be failed with this technology as a result of a failure of an individual storage element, thereby reducing data storage device failure rates and associated overhead.
Abstract:
One or more techniques and/or systems are disclosed for enabling communication between a SAS communication port of a SAS communication component and multiple storage devices. In a first example, a first SAS to SATA bridge chip and a second SAS to SATA bridge chip may be configured to route data from a SAS communication component to multiple storage devices. In a second example, a SAS to SATA bridge chip and a port multiplier may be configured to route data from a SAS communication component to multiple storage devices. In a third example, a four port SAS to SATA bridge comprising two SAS ports and two SATA ports may be configured to route data from a SAS communication component to multiple storage devices. Supporting two or more storage devices with a single SAS communication port allows storage enclosures to increase storage capacity, while decreasing cost per slot.