摘要:
A method (10) of configuring a synchronous optical switch to route received data cells. The synchronous optical switch comprises optical switch transmitter modules, each comprising tunable optical transmitters, optical switch receiver modules, each comprising optical receivers, and optical connections between the transmitter modules and receiver modules. For each optical switch transmitter module, the method: assigns (12) wavelengths associated with the received data cells to the transmitters such that each wavelength is assigned to a different transmitter; and generates (14) a control signal for controlling the operating wavelength of each transmitter. For each wavelength, the method: allocates (16) to each transmitter an optical connection such that each optical switch transmitter module has no more than one connection exiting it at said wavelength and each optical receiver module has no more than one connection entering it at said wavelength; and generates (18) a control signal for connecting each transmitter to the respective optical connection.
摘要:
A method (10) of configuring a synchronous optical switch to route received data cells. The synchronous optical switch comprises optical switch transmitter modules, each comprising tunable optical transmitters, optical switch receiver modules, each comprising optical receivers, and optical connections between the transmitter modules and receiver modules. For each optical switch transmitter module, the method: assigns (12) wavelengths associated with the received data cells to the transmitters such that each wavelength is assigned to a different transmitter; and generates (14) a control signal for controlling the operating wavelength of each) transmitter. For each wavelength, the method: allocates (16) to each transmitter an optical connection such that each optical switch transmitter module has no more than one connection exiting it at said wavelength and each optical receiver module has no more than one connection entering it at said wavelength; and generates (18) a control signal for connecting each transmitter to the respective optical connection.
摘要:
A synchronous packet switch comprises output modules, input modules, optical connections and a switch control unit. The output modules comprise optical receivers each configured to receive optical signals at a different wavelength. The input modules receive electric signals carrying data cells to be routed. Each input module comprises optical transmitters, each configurable to generate an optical signal at a different wavelength, and routing apparatus comprising output ports. Each output module has at least one output port allocated to it. The routing apparatus is configurable to route a received optical signal to a selected output port. The optical connections are arranged to couple output ports to respective output modules. The switch control unit controls routing of the optical signals from the transmitters to the output modules and generates a routing control signal for configuring the routing apparatus to route an optical signal from a transmitter to a selected output port.
摘要:
A synchronous packet switch comprises output modules, input modules, optical connections and a switch control unit. The output modules comprise optical receivers each configured to receive optical signals at a different wavelength. The input modules receive electric signals carrying data cells to be routed. Each input module comprises optical transmitters, each configurable to generate an optical signal at a different wavelength, and routing apparatus comprising output ports. Each output module has at least one output port allocated to it. The routing apparatus is configurable to route a received optical signal to a selected output port. The optical connections are arranged to couple output ports to respective output modules. The switch control unit controls routing of the optical signals from the transmitters to the output modules and generates a routing control signal for configuring the routing apparatus to route an optical signal from a transmitter to a selected output port.
摘要:
A node (260, 50) for a multi-token optical communications network has optical channels between the node and other nodes, each channel having a token (T1, T2, T3), passed between nodes, to indicate that a corresponding optical channel is available for transmission during a token holding time. The node has a transmitter (280) for transmitting packets over the optical channels, a buffer (170, 270) for queuing packets before transmission, and a transmit controller (170, 290) configured to control the buffer to forward an initial packet or packets from the buffer to the transmitter once a token has been received. The transmit controller determines how much of the token holding time remains after the transmission of the initial packet or packets, and then controls the buffer to forward a further packet according to the remaining token holding time. A maximum packet delay can be reduced where there is asymmetric traffic. A token holding time can be different for different nodes.
摘要:
A node (260, 50) for a multi-token optical communications network has optical channels between the node and other nodes, each channel having a token (T1, T2, T3), passed between nodes, to indicate that a corresponding optical channel is available for transmission during a token holding time. The node has a transmitter (280) for transmitting packets over the optical channels, a buffer (170, 270) for queuing packets before transmission, and a transmit controller (170, 290) configured to control the buffer to forward an initial packet or packets from the buffer to the transmitter once a token has been received. The transmit controller determines how much of the token holding time remains after the transmission of the initial packet or packets, and then controls the buffer to forward a further packet according to the remaining token holding time. A maximum packet delay can be reduced where there is asymmetric traffic. A token holding time can be different for different nodes.
摘要:
A node (260) for an optical communications network in which a token is passed between nodes, indicating that a corresponding optical channel is available for transmission during a token holding time while that node holds that token, until it passes the token to another node. A transmit controller (290) determines a traffic class of said packet and controls a buffer to forward a packet from the buffer to the transmitter according to the traffic class, if there is sufficient of the token holding time remaining before the received token must be passed on to another node for said packet to be transmitted by the transmitter over an optical channel corresponding to the received token. By having the packet forwarding dependent on traffic class, packets can be handled differently to suit different characteristics of the traffic classes.
摘要:
An all-optical contention manager includes at least two inputs and at least two outputs. The outputs are configured to output signals to a Banyan switch. The contention manager detects and resolves routing contentions between incoming optical signals prior to outputting the signals to the Banyan switch. The signals have tags that include routing information. A photonic comparator in the contention manager compares the tags of incoming optical signals in order to detect contention.
摘要:
An all-optical contention manager includes at least two inputs and at least two outputs. The outputs are configured to output signals to a Banyan switch. The contention manager detects and resolves routing contentions between incoming optical signals prior to outputting the signals to the Banyan switch. The signals have tags that include routing information. A photonic comparator in the contention manager compares the tags of incoming optical signals in order to detect contention.
摘要:
An optical switch controller controls an optical interconnection network that variably connects at least one input data channel to a plurality of outputs channels via at least one switching element. An address reader module has at least one semiconductor optical amplifier optically processes an optical signal. The address reader module obtains information by reading a data tag from the input data channel, and outputs an address control signal based on the information. The address control signal can be used to control switching elements in the optical interconnection network.