Abstract:
A toner for developing electrostatic image comprising a toner particle containing a binding resin is disclosed. which, and In the toner the binding resin has a domain-matrix structure composed of a high elastic resin composing a domain and a low elastic resin composing a matrix, an arithmetic mean value of ratio (L/W) of the Length L to Width W of the domains is 1.5 to 5.0, domains having Length L in the range of 60 to 500 nm exist 80 number % or more, and domains having Width Win the range of 45 to 100 nm exist 80 number % or more, in a viscoelastic image of a cross section of the toner particle observed via an atomic force microscope.
Abstract:
An image forming method is disclosed, comprising transferring and fixing steps, wherein fixing is performed by a fixing device in which at least one of a heating member and a pressing member comprises an endless belt entrained about plural rollers, and the heating member and the pressing member are pressed against each other to form a fixing nip, and wherein toner particles contains a binder resin which has a domain/matrix structure constituted of a high-elastic resin forming a domain and a low-elastic resin forming a matrix in an elastic image obtained when observing the toner particles by an atomic force microscope with respect to a section of the individual toner particles, in which an arithmetic average value of a ratio (L/W) of a major axis (L) to a minor axis (W) of individual domains is 1.5 to 5.0, and domains having the major axis (L) of 60 to 500 nm account for not less than 80% by number of total domains and domains having the minor axis (W) of 45 to 100 nm account for not less than 80% by number of total domains.
Abstract:
A toner for electrostatic latent image development is disclosed, comprising a binder resin which comprises a resin A comprising a copolymer comprised of at least a styrenic monomer unit and a (meth)acrylic monomer unit and a resin B comprising a copolymer comprised of at least a methacrylate monomer unit and a radical-polymerizable monomer unit containing plural carboxyl groups, and a total amount of the methacrylate monomer unit and the radical-polymerizable monomer unit containing plural carboxyl groups accounts for not less than 70% by mass and not more than 95% by mass of all monomer units forming the copolymer of the resin B.
Abstract:
A toner for developing an electrostatic image is disclosed. The toner has softening point Tsp of from 90° C. to 110° C., and the toner satisfies the relation of 0.02≦(Sw/S)×100≦10, Sw being an area of a wax domain having largest diameter among wax domains at a cross section of the toner particle, and S being entire area of the cross section of the toner particle.
Abstract:
Disclosed is a toner for electrostatic image development that satisfies both low-temperature fixing ability and excellent high-temperature storage stability, achieves excellent charge property and shatter resistance, and consequently can form a high-quality image even by a high-performance machine such as a high-speed machine.The toner is composed of toner particles obtained by forming a shell layer containing a styrene-acryl-modified polyester resin on the surface of each of core particles comprising a binder resin containing at least a styrene-acrylic resin. The styrene-acryl-modified polyester resin is obtained bonding a styrene-acrylic polymer segment to a terminal of a polyester segment, and the content of the styrene-acrylic polymer segment in the styrene-acryl-modified polyester resin is 5% by mass or more and 30% by mass or less.
Abstract:
A toner used for electrostatic latent image development which is excellent in fixing separability with maintaining sufficient low temperature fixability even in a high-speed machine and is also superior in crashing resistance, comprising toner particles, each comprising a core particle and a shell layer provided on the surface of the core particle, wherein the core particle comprises a binder resin containing a styrene-acrylic resin and a first styrene-acrylic modified polyester, and the shell comprises a second styrene-acrylic modified polyester resin.
Abstract:
Disclosed is a manufacturing method of toner which includes at least polyester resin and colorant, comprising the steps of: (A) dissolving, into an organic solvent, the polyester resin and ultrahigh molecular weight styrene resin in which a peak is present in a range larger than 500 thousands and smaller than 3 million in a molecular weight distribution, and preparing a binder resin solution; (B) dispersing the binder resin solution as binder resin solution droplets into an aqueous medium; (C) removing the organic solvent from the binder resin solution droplets, and preparing a resin particle dispersion; and (D) aggregating resin particles from which the organic solvent is removed and colorant particles containing the colorant with each other, and forming toner particles.
Abstract:
Disclosed is a toner comprising at least a binder resin, a colorant and a polyurethane resin, wherein the polyurethane resin is a carboxy-denatured polyurethane resin.
Abstract:
An electrophotographic image forming method is disclosed, comprising forming a toner image, transferring the toner image onto a recording medium and fixing the transferred toner image in a fixing device comprising a heating roller, an endless belt pressed into contact with the heating roller, a pressing member pressing the inner side of the endless belt and an end pressing member to locally elastically deform the heating roller and provided downstream from the pressing member, wherein the toner comprises toner particles comprising a core containing a resin, a colorant and a releasing agent and a shell on, and the toner particles exhibiting an average of eight-point mean thickness of the shell of 100 to 300 nm and meeting a requirement of an average of Hmax/Hmin being less than 1.50, wherein Hmax is a maximum thickness of the shell and Hmin is a minimum thickness of the shell.
Abstract:
An electrophotographic toner is disclosed, meeting the requirement that G′ (60)/G′ (80) is from 1×102 to 1×104, where G′ (60) G′ (80) are each a storage modulus of the toner at 60° C. and 80° C., respectively; G′ (100)/G′ (130) is from 1 to 102, where G′ (100) and G′ (130) are each a storage modulus of the toner at 100° C. and 130° C., respectively; and G′ (10-130) is from 5×102 to 1×102 dyn/cm21 where G′ (100-130) is a storage modulus of the toner at a temperature of from 100 to 130° C.