摘要:
Snow removing machine includes an auger for removing accumulated snow, an accumulated snow height detection section for detecting a height of accumulated snow in front of the auger, an auger lifting and lowering section for lifting and lowering the auger, and a control section for controlling the auger lifting and lowering section to lift the auger in response to detection, by the accumulated snow height detection section, of the accumulated snow. By the provision of the accumulated snow height detection section, the present invention can save a human operator a trouble of setting in advance a target height position of the auger and thereby alleviate a load on the human operator.
摘要:
Snow removing machine includes an auger for removing accumulated snow, an accumulated snow height detection section for detecting a height of accumulated snow in front of the auger, an auger lifting and lowering section for lifting and lowering the auger, and a control section for controlling the auger lifting and lowering section to lift the auger in response to detection, by the accumulated snow height detection section, of the accumulated snow. By the provision of the accumulated snow height detection section, the present invention can save a human operator a trouble of setting in advance a target height position of the auger and thereby alleviate a load on the human operator.
摘要:
A walk-behind self-propelled working machine has a machine body, a working unit mounted on the machine body to perform a working operation, an engine mounted on the machine body to drive the working unit, and a traveling unit mounted on the machine body and drivable to cause the machine body to travel. A control unit controls operations of the working unit and the traveling unit. An operating section is operatable by a human operator to provide signals to the control unit to control operations of the working unit and the traveling unit. A mode selector switch is mounted on the operating section for operation by the human operator to select one working operation mode from among plural alternative working operation modes that are set in advance in the control unit on the basis of a combination of a travel speed of the machine body, a revolving speed of the engine, and an opening of a throttle valve associated with the engine.
摘要:
A walk-behind self-propelled snow-removing machine includes a snow-removing-unit posture control member disposed on an operating section at one side thereof, a travel ready lever comprised of a deadman's lever mounted on one operation handlebar at the other side of the operating section, and a mode selector switch disposed on the operating section and located forwardly of the travel ready lever for selecting one of plural alternative snow removing operation modes that are set in advance in a control unit on the basis of a travel speed of a machine body, a revolving speed of an engine, and an opening of a throttle valve.
摘要:
A self-propelled snow remover has a machine body, a snow-removing implement mounted to a front part of the machine body for undergoing rolling and vertical movement relative to the machine body, and an operating unit mounted to a rear part of the machine body. An alignment operating member is mounted to the operating unit for rolling and vertically moving the snow-removing implement. The alignment operating member is disposed on one of opposite sides of a widthwise central line of the machine body. A return operating member is mounted to the operating unit for automatically returning the snow-removing implement to a predetermined reference position. The return operating member is disposed proximate to the alignment operating member at a position closer to the widthwise central line of the machine body than the alignment operating member and further towards the rear part of the machine body than the alignment operating member.
摘要:
A self-propelled snow remover having a snow-removing implement mounted to the front of a machine body so as to be capable of lifting, lowering, and rolling. The self-propelled snow remover includes an alignment operating member and a return operating member mounted to an operating unit. The alignment operating member is provided for both rolling and vertically moving the snow-removing implement and is disposed towards a left or right side with respect to a widthwise center of the machine body. The return operating member is operated as the snow-removing implement is returned automatically to a predetermined reference position and is disposed in the vicinity of the alignment operating member.
摘要:
An aspect of the present invention relates to a method of manufacturing a hexagonal ferrite magnetic particle comprising melting an Al-containing starting material mixture to prepare a melt and quenching the melt to obtain an amorphous material; subjecting the amorphous material to heat treatment to cause a hexagonal ferrite magnetic particle to precipitate in a product obtained by the heat treatment; collecting a hexagonal ferrite magnetic particle by subjecting the product to treatment with an acid and washing, wherein the hexagonal ferrite magnetic particle collected has a particle size ranging from 15 to 30 nm, comprises 0.6 to 8.0 weight percent of Al, based on Al2O3 conversion, relative to a total weight of the particle, and Al adheres to a surface of the hexagonal ferrite magnetic particle.
摘要翻译:本发明的一个方面涉及一种制造六方晶系铁氧体磁性颗粒的方法,包括熔化含Al原料混合物以制备熔体并淬火熔体以获得无定形材料; 使无定形材料进行热处理,使六方晶系铁氧体磁性颗粒在通过热处理获得的产品中沉淀; 收集六方晶系铁氧体磁性颗粒,通过酸处理和洗涤进行处理,其中所收集的六方晶系铁氧体磁性颗粒具有15至30nm的粒度,包含基于Al 2 O 3转化率的0.6至8.0重量%的Al, 相对于颗粒的总重量,Al附着到六方晶系铁氧体磁性颗粒的表面。
摘要:
Operation mechanism of a working machine includes a main clutch lever pivotably provided on an operating handle, and a pivot member operable in interlocked relation to pivoting operation of the main clutch lever. The pivot member pivots about a pivot point differing in position from a pivot point of the main clutch lever. When fully pulled by pivoting operation of the main clutch lever, the cable member is located nearest to the pivot point of the pivot member, so that force reverse-pivoting the pivot member is reduced.
摘要:
A hexagonal ferrite magnetic powder having an average tabular diameter of from 15 to 28 nm, a coercive force (Hc) of from 2,000 to 5,000 Oe (from 160 to 400 kA/m), a switching field distribution (SFD) of from 0.3 to 0.7 and a D70/D50 of from 1.05 to 1.25. This magnetic powder can be obtained by melting and quenching starting materials to obtain an amorphous product, and thermally treating the product, which comprises increasing a temperature at a rate of 300 to 500° C./hr in a temperature range of 550 to 600° C. in the thermal treatment before the temperature reaches the thermally treating temperature.
摘要:
A hexagonal ferrite magnetic powder having an average tabular diameter of from 15 to 30 nm, a coercive force (Hc) of from 2,000 to 5,000 Oe (from 160 to 400 kA/m) and a saturated magnetization (σs) of equal to or more than [the average tabular diameter (nm)×0.37+45] A·m2/kg. This magnetic powder is obtained by melting a starting material containing a material which has a composition within the hatched region (1) in the triangular phase diagram shown in FIG. 1 and quenching the molten product to obtain an amorphous product, subjecting the amorphous product to a thermal treatment, acid treatment, and washing. Also, a magnetic recording medium is obtained by adding this magnetic powder to the magnetic layer and coating it on the support.