Abstract:
A method for determining the code phase between a code modulated signal 21 received at a receiver and an available replica code sequence which reduces the complexity of time to frequency transform based correlations performs a multiplication (25) between a first vector (23) and a second vector (24) resulting in a third vector (26), which first vector (23) is generated based on the received signal (21) and which second vector (24) is generated based on the replica code sequence, both in an operation including a time to frequency transform. The method further comprises dividing the resulting vector (26) into sections (29) and summing (30) the samples in each section (29) to form a vector (31), upon which a frequency to time transform is performed. The invention relates equally to a corresponding receiver, to an electronic device comprising such a receiver, to a device cooperating with such a receiver and to a corresponding system.
Abstract:
The invention relates to a method for determining the correlation phase between a signal received at a receiver and a replica sequence. A matched filter multiplies samples (21) of the received signal with samples (22) of the replica and sums the resulting products to obtain a correlation value for a specific correlation phase. The samples of the received signal and the replica are shifted relative to each other for each correlation phase that is to be checked. In order to reduce the computational load, it is proposed that results obtained in the correlation calculations for one correlation phase are used by the matched filter also for calculations for a subsequent correlation phase. The invention relates equally to a corresponding receiver, to an electronic device comprising such a receiver, to a device cooperating with such a receiver and to a corresponding system.
Abstract:
The invention relates to a method, a processing unit and a system for determining the correlation between consecutive sets of samples of a received, code modulated signal and replica samples. In order to reduce the computational load, the positions of samples in said replica code sequence are grouped, each of these positions and a predetermined number of respective subsequent positions forming a subgroup and each group comprising the respective first position of all subgroups with positions associated with a similar composition of consecutive replica samples. The method combines those values of samples of the first set of samples, which are associated by their position to a respective group, separately for each group to obtain a respective preliminary result. Determining a correlation value for each of the sets of samples then comprises combining the obtained preliminary results for all groups separately for each of the sets of samples.
Abstract:
The invention relates to a method for determining the correlation between a signal transmitted by a beacon and tracked by a receiver and a reconstructed signal expected to be received at the receiver, wherein the received signal and the reconstructed signal are shifted against each other. In order to provide a possibility of compensating residual sinusoidal modulations in the tracked signal, it is proposed that at each shifting position, the samples of the received and the reconstructed signal are multiplied and integrated separately in a plurality of sections. The results are multiplied with a shifted and complex conjugated version of itself. The products resulting in this second multiplication are integrated to receive a single final value for each shifting position. Finally, the maximum final value resulting for the different shifting positions is determined, the shifting position with the maximum value being considered as the shifting position with the maximum correlation.
Abstract:
A method and corresponding apparatus for accurately determining the offset of the carrier frequency of a received signal from a nominal frequency (the offset due to for example Doppler shifting), such as is done in a ranging receiver when acquiring or tracking a signal transmitted by a beacon (such as a satellite) of a positioning system. The method amplifies a conventional correlation by performing a special noncoherent integration of the real and imaginary components of the output of a conventional (coherent) correlation calculation, resulting in a complex phasor having a phase that bears information about the offset of the carrier frequency from the nominal carrier frequency.
Abstract:
The invention relates to a method, a processing unit and a system for determining the correlation between samples of a received code modulated signal and samples of replica code sequences. In order to simplify and accelerate the process, it is proposed that the received samples and the replica samples are aligned to each other and that the positions of the samples in the received signal and in the replica code sequences are grouped, each group comprising all positions at which the composition of the values of the samples of all of the replica code sequences is similar. The values of the received samples which are associated to a respective group are combined separately for each group to obtain a respective preliminary result. Then, a correlation value is determined for each replica code sequence by combining the preliminary results obtained for all groups separately for each replica code sequence, taking into account the values of the samples of the replica sequences in the respective group.
Abstract:
An N-clock system, for use for example in a ranging receiver using a Kalman filter. The clock system uses N clocks (to save power by using some clocks that consume less power) with a schedule for switching from one clock to another (so that only one clock is on at any instant of time). It uses an N-clock model that, in case of an application using clock 1 for time interval nullt1, clock 2 for time interval nullt2, . . . , and clock N for time interval nulltN, provides a state update equation for updating the N-clock system state (the state components being typically time and fractional frequency). The state update equation results from propagating the state of the assembly of N clocks (providing a single output, i.e. acting as a single clock) forward from interval to interval until the entire interval of nullt1nullnullt2null . . . nullnulltN is covered.
Abstract:
A method for validating detected code modulated signals transmitted by beacons of a positioning system and received by a receiver comprises as a first step performing measurements for the detected beacon signals. Then, at least one of the detected beacon signals is selected as a calibration signal. In a next step, at least one allowed range for results of measurements for detected beacon signals other than said calibration signal are determined based on measurements for the detected calibration signal and on an available reference position of the receiver. Finally, each detection of a beacon signal for which results of performed measurements are outside of an allowed range is rejected. The invention relates equally to a corresponding receiver, to an electronic device comprising such a receiver, to a device cooperating with such a receiver and to a corresponding positioning system.
Abstract:
The invention relates to a method for determining the time of transmission of a signal part of a code modulated signal transmitted by a beacon of a positioning system and received by a receiver of the positioning system. In order to enable such a determination in weak signal conditions, it is proposed that measured subcomponents of the time of transmission of at least two signal parts are compared with corresponding predicted subcomponents in a way resulting in a combined difference for all signal parts. The comparison is performed for a plurality of assumed errors in the predicted subcomponent. The accurate time of transmission of a signal part is then determined based on the determined error value which results in the smallest combined difference. The invention relates equally to a corresponding receiver and to a corresponding positioning system.