摘要:
An air/fuel ratio detection device and an air/fuel ratio control device, in which combustion of an engine is controlled with a simple design and toxic substances in exhaust gas discharged from the engine are reduced. Time A during which a lean signal is at a high level is measured. If the time A is shorter than the predetermined value, it is determined that the air/fuel ratio is richer than a target value, and time B during which an electromagnetic valve 21 is open is lengthened, increasing the quantity of supply air and making leaner the fuel mixed air, such that the target air/fuel ratio is approached. If the time A is longer than the predetermined value, it is determined that the air/fuel ratio is leaner and the time B is shortened.
摘要:
Apparatus for detecting the NOx concentration includes a first measurement chamber 20 communicating with the gas under measurement via a diffusion rate defining layer 4d and a second measurement chamber 26 communicating with the first measurement chamber 20 via diffusion limiting layers 6d, 22d. A first pump current IP1 is controlled so that an output of a Vs cell 6 will be equal to the reference voltage VCO for controlling the oxygen concentration in the first measurement chamber 20 to a pre-set low value. A constant voltage is applied across the second pump cell 8 for decomposing the NOx component in the second measurement chamber 26 for pumping out oxygen for detecting the NOx concentration from a second pump current IP2. The sensor temperature is detected from the internal resistance of the Vs cell for controlling the current supplied to the heaters 12, 14. If the temperature of the gas under measurement is changed rapidly, the sensor temperature is changed. The detected second pump current IP2 is corrected depending on an offset of the detected sensor temperature from the target temperature assuring detection of the NOx concentration to high accuracy.
摘要:
An air/fuel ratio sensor is controlled such that the oxygen concentration of the measurement gas can be detected from a pump current substantially instantaneously after a heater turns on. In the air/fuel ratio sensor an oxygen pumping cell and an oxygen concentration measuring cell are each formed of a solid electrolytic layer interposed between a pair of porous electrodes. One of the electrodes of each cell defines a measurement gas chamber in which the diffusion of the measurement gas is controlled. After a micro current is supplied to the other electrode of the oxygen concentration measuring cell for a predetermined period of time, thereby forming an internal reference oxygen source, the supply of the micro current is stopped and at the same time a pump current in the oxygen pumping cell starts to be controlled until the interelectrode voltage of the oxygen concentration measuring cell reaches a target voltage. After the air/fuel ratio sensor is activated, the supply of the micro current is restarted.
摘要:
Apparatus for detecting the NOx concentration includes a first measurement chamber 20 communicating with the gas under measurement via a diffusion rate defining layer 4d and a second measurement chamber 26 communicating with the first measurement chamber 20 via diffusion limiting layers 6d, 22d. A first pump current IP1 is controlled so that an output of a Vs cell 6 will be equal to the reference voltage VCO for controlling the oxygen concentration in the first measurement chamber 20 to a pre-set low value. A constant voltage is applied across the second pump cell 8 for decomposing the NOx component in the second measurement chamber 26 for pumping out oxygen for detecting the NOx concentration from a second pump current IP2. The sensor temperature is detected from the internal resistance of the Vs cell for controlling the current supplied to the heaters 12, 14. If the temperature of the gas under measurement is changed rapidly, the sensor temperature is changed. The detected second pump current IP2 is corrected depending on an offset of the detected sensor temperature from the target temperature assuring detection of the NOx concentration to high accuracy.
摘要:
An ion current detection apparatus which can detect ion current with a high degree of accuracy regardless of the presence of voltage damped oscillation and which does not cause contamination of a spark plug. A spark discharge current Isp generated upon spark discharge of a spark plug 10 flows through a charge diode 28, a capacitor 24, and a diode 22, which form a closed loop together with the spark plug 10 and a secondary winding L2 of an ignition coil 12 that constitutes an ignition apparatus. As a result, a Zener diode 26 connected in parallel to these components generates a Zener voltage Vz and thereby charges the capacitor 24. When a preset wait time has elapsed after the ignition timing for starting spark discharge, the discharge switch 30 short-circuits the opposite ends of the charge diode 28 to discharge the capacitor 24, so that a high voltage having a polarity opposite that in the case of spark discharge is applied to the spark plug. An ion current Iio flowing at this time is detected by use of a resistor 22 connected in parallel to the diode 22.
摘要:
A misfire detecting device for a double-ended distributorless ignition system is provided. The device includes a pulse generating circuit for generating a positive polarity pulse which is not so high as to cause spark discharge during the time after completion of spark discharge and before beginning of application of an ignition high voltage for next spark discharge. A reverse current preventing diode is connected at an anode to an output end of the pulse generating circuit and at a cathode to a positive polarity side of a secondary winding of an ignition coil. A plug voltage dividing circuit for dividing a plug voltage is connected between a center electrode and an outer or ground electrode of each of spark plugs to obtain a divided voltage. A detecting circuit detects a misfire of the spark plugs on the basis of an attenuation characteristic of the divided voltage after application of the positive polarity pulse.
摘要:
Apparatus for detecting the NOx concentration includes a first measurement chamber 20 communicating with the gas under measurement via a diffusion rate defining layer 4d and a second measurement chamber 26 communicating with the first measurement chamber 20 via diffusion limiting layers 6d, 22d. A first pump current IP1 is controlled so that an output of a Vs cell 6 will be equal to the reference voltage VCO for controlling the oxygen concentration in the first measurement chamber 20 to a pre-set low value. A constant voltage is applied across the second pump cell 8 for decomposing the NOx component in the second measurement chamber 26 for pumping out oxygen for detecting the NOx concentration from a second pump current IP2. The sensor temperature is detected from the internal resistance of the Vs cell for controlling the current supplied to the heaters 12, 14. If the temperature of the gas under measurement is changed rapidly, the sensor temperature is changed. The detected second pump current IP2 is corrected depending on an offset of the detected sensor temperature from the target temperature assuring detection of the NOx concentration to high accuracy.
摘要:
Using a sole Nox sensor Nox concentration and oxygen concentration are measured accurately. A measurement device for measuring NOx concentration and oxygen concentration comprises an NOx sensor 2 having a first measurement chamber 20 communicating via a diffusion rate regulating layer 4d with the gas under measurement and a second measurement chamber 26 communicating with the first measurement chamber 20 via diffusion rate regulating layers 6d, 22d. A first pump cell 4 and an oxygen concentration measurement Vs cell 6 are formed on the first measurement chamber 20, while a second pump cell 8 is formed on the second measurement chamber 26. Inside of the first measurement chamber 20 is controlled to a constant low oxygen concentration by controlling the first pump current IP1 so that output of Vs cell 6 will equal a reference voltage VC0. By applying a constant voltage across the second pump cell 8 NOx in the second measurement chamber 26 is decomposed to pump out oxygen. Thus NOx concentration and oxygen concentration are measured from the second pump current IP2 and from the first pump current IP1, respectively. During measurement, sensor temperature is detected from the internal resistance of the Vs cell for controlling heater current supplied to heaters 12, 14 to maintain a constant sensor temperature.
摘要:
A method of detecting a misfire of an ignition system for an internal combustion engine is provided. By the method, after completion of spark discharge of a spark plug, a high tension pulse which is not so high as to cause spark discharge is applied to each spark plug by way of a reverse current preventing diode and a secondary winding of an ignition coil or by way of a reverse current preventing diode and a leakage preventing diode for preventing ingress of an ignition high voltage. Misfire at each cylinder is detected on the basis of a voltage attenuation characteristic at a passing side terminal of the reverse current preventing diode. A device for carrying out the above method is also provided.
摘要:
A method and apparatus for detecting a functional condition of an NOx occlusion catalyst using an NOx sensor. In order to compensate for variations in oxygen concentration of the exhaust gas which would otherwise affect the detected NOx concentration downstream of the NOx occlusion catalyst, a relative value is calculated as the difference between the detected NOx concentration and the value of the detected NOx concentration initially after start of operation control of an internal combustion engine at a lean air-fuel ratio. The occlusion capability of the NOx occlusion catalyst is judged to have deteriorated when an increase in the relative value exceeds a predetermined value. On the other hand, the NOx occlusion catalyst is judged to have suffered an anomaly when the rate of increase in the relative value becomes greater than a predetermined allowable value.