-
公开(公告)号:US11816185B1
公开(公告)日:2023-11-14
申请号:US16383347
申请日:2019-04-12
申请人: Nvidia Corporation
发明人: Holger Roth , Yingda Xia , Dong Yang , Daguang Xu
IPC分类号: G06F18/214 , G06F9/30 , G06N3/08 , G16H30/40 , G06N5/04 , G06F18/211 , G06F18/2433 , G06N3/045
CPC分类号: G06F18/2155 , G06F9/3001 , G06F18/211 , G06F18/2433 , G06N3/045 , G06N3/08 , G06N5/04 , G16H30/40 , G06V2201/031
摘要: Volumetric quantification can be performed for various parameters of an object represented in volumetric data. Multiple views of the object can be generated, and those views provided to a set of neural networks that can generate inferences in parallel. The inferences from the different networks can be used to generate pseudo-labels for the data, for comparison purposes, which enables a co-training loss to be determined for the unlabeled data. The co-training loss can then be used to update the relevant network parameters for the overall data analysis network. If supervised data is also available then the network parameters can further be updated using the supervised loss.
-
公开(公告)号:US20210334955A1
公开(公告)日:2021-10-28
申请号:US16858219
申请日:2020-04-24
申请人: Nvidia Corporation
发明人: Holger Roth , Dong Yang , Daguang Xu , Vishwesh Nath
IPC分类号: G06T7/00 , G06F40/169 , G06N3/08 , G06T7/11
摘要: Apparatuses, systems, and techniques are presented to predict annotations for objects in images. In at least one embodiment, one or more annotations corresponding to one or more objects within one or more images are generated based, at least in part, on one or more neural networks iteratively trained using the one or more images.
-
公开(公告)号:US20210334975A1
公开(公告)日:2021-10-28
申请号:US16856823
申请日:2020-04-23
申请人: Nvidia Corporation
发明人: Dong Yang , Holger Roth , Xiaosong Wang , Ziyue Xu , Andriy Myronenko , Daguang Xu
摘要: Apparatuses, systems, and techniques are presented to predict segmentations for objects in images. In at least one embodiment, a neural network is trained to determine one or more segmentation masks corresponding to one or more objects of one or more digital images based, at least in part, on one or more boundary regions of the one or more objects.
-
公开(公告)号:US20230069310A1
公开(公告)日:2023-03-02
申请号:US17398655
申请日:2021-08-10
申请人: Nvidia Corporation
发明人: Andriy Myronenko , Ziyue Xu , Dong Yang , Holger Roth , Daguang Xu
摘要: Apparatuses, systems, and techniques are presented to classify objects in images. In at least one embodiment, one or more neural networks are used to identify one or more objects in one or more full images based, at least in part, on the one or more neural networks having been trained using the one or more full images and one or more portions of the one or more full images.
-
公开(公告)号:US20230061998A1
公开(公告)日:2023-03-02
申请号:US17459644
申请日:2021-08-27
申请人: Nvidia Corporation
发明人: Dong Yang , Andriy Myronenko , Xiaosong Wang , Ziyue Xu , Holger Roth , Daguang Xu
摘要: Apparatuses, systems, and techniques are presented to select neural networks. In at least one embodiment, one or more first neural networks can be used to select one or more second neural networks, as may be based at least in part upon an inference to be generated by the one or more second neural networks.
-
-
-
-