Abstract:
A generator includes a control device including a processor, and outputs electrical energy to a treatment instrument. The processor determines whether a treatment target has been heat-denatured prior to receiving an output command, and, based on determination, selects, as an operation state of the treatment instrument, one of a first mode if it is determined that the treatment target has not been heat-denatured and a second mode if it is determined that the treatment target has been heat-denatured. The processor operates the treatment instrument at the selected operation state by controlling the output of the electrical energy to the treatment instrument.
Abstract:
An electrode unit of the invention includes: an electrode including one end and another end, the other end including a free end; and an electrode supporting portion that supports the one end of the electrode. The electrode is disposed in a second plane that is different from a first plane in which the electrode supporting portion is moved to advance or withdraw when the electrode supporting portion is moved to advance or withdraw in a direction along a longitudinal axis of the electrode supporting portion, and the electrode is supported by the electrode supporting portion via a flexed portion projecting from the first plane to the second plane.
Abstract:
A living tissue bonding system includes a treatment instrument having a heating element which applies thermal energy to living tissue, an element temperature measuring section configured to measure an element temperature T1 of the heating element, a power source configured to generate power, a first calculating section configured to estimate a temperature difference ΔT between the element temperature T1 and a temperature T2 of the living tissue using a table or an equation stored beforehand in order to estimate the temperature difference ΔT based on an output value of the power source, a second calculating section configured to estimate the tissue temperature T2 from the element temperature T1 and the temperature difference ΔT estimated by the first calculating section, and a control section configured to control the power source based on the tissue temperature T2 estimated by the second calculating section.
Abstract:
A control device includes: a power source configured to supply a high frequency power to a treatment instrument configured to treat a living tissue; a detecting circuit configured to sequentially detect a phase difference between a voltage and a current of the high frequency power supplied to the treatment instrument; and a processor configured to control operation of the power source, the processor being configured to sequentially calculate a variation of the phase difference detected by the detecting circuit, compare the calculated variation of the phase difference with a first threshold set for a variation of a phase difference, and perform reduction processing to reduce output of the high frequency power to be supplied to the treatment instrument when it is determined that the calculated variation of the phase difference is equal to or smaller than the first threshold.
Abstract:
A heating treatment apparatus to treat a living tissue by heating the living tissue includes a first holding member and a second holding member, a first heat generating element provided on the first holding member, a second heat generating element provided on the second holding member, a power supply unit supplying electric power to cause the first heat generating element and the second heat generating element to generate heat, and a control unit controlling operations of the power supply unit. The control unit switches a mode between a first mode and a second mode during treatment of the living tissue. Temperatures of the first heat generating element and the second heat generating element are controlled to the same temperature in the first mode and to different temperatures in the second mode.
Abstract:
A living tissue bonding system including: a sandwiching section for sandwiching living tissue; a power source for supplying to the living tissue treatment energy for bonding the living tissue sandwiched by the sandwiching section; a temperature measuring section for measuring a temperature of the living tissue sandwiched by the sandwiching section; a calculation section calculating, from the temperature of the living tissue measured by the temperature measuring section and a time period of applying the treatment energy, a time integral value of the temperature of the living tissue; a comparison section comparing the time integral value of the temperature of the living tissue calculated by the calculation section with a predetermined setting value; and an instruction section giving an instruction based on a result of the comparison by the comparison section.
Abstract:
A control device includes a processor configured to: execute a sealing control mode in which electrical power to seal a living tissue by heating the living tissue at a first temperature is supplied, and an incision control mode in which electrical power to incise the living tissue by heating the living tissue at a second temperature higher than the first temperature is supplied; calculate elapsed time, as an index value, since it has reached the second temperature by executing the incision control mode; compare the index value and a threshold; determine a residual heat level of an end effector based on a result of comparison between the index value and the threshold; and perform, based on a determination result of the residual heat level, at least one of: notification of information indicating a warning from a notifying unit; and adjustment of electrical power supplied to the end effector.