FULL DEPTH LASER OPHTHALMIC SURGICAL SYSTEM, METHODS OF CALIBRATING THE SURGICAL SYSTEM AND TREATMENT METHODS USING THE SAME

    公开(公告)号:US20200038241A1

    公开(公告)日:2020-02-06

    申请号:US16053724

    申请日:2018-08-02

    IPC分类号: A61F9/008

    摘要: A full depth ophthalmic surgical system includes a femtosecond laser source and an optical coherence tomographer. The system is capable of performing surgical procedures along the entire length of the eye from the cornea to the retina. In one embodiment, the system uses a removeable focal point extension assembly to extend the reach of the focal point location of the laser beam to the vitreous humor of the eye. In another embodiment, the optical system of the ophthalmic surgical system is optimized to focus the laser beam and imaging light in the vitreous humor of the eye. For procedures performed posterior to the lens, a method for calibrating the full depth ophthalmic surgical system uses the focal zone of the optical coherence tomographer beam as a proxy for the focal zone of the femtosecond laser source to. The system can be used to perform treatment in the vitreous humor, including treating floaters and liquification of the vitreous humor.

    METHODS AND SYSTEMS FOR CHANGING A REFRACTIVE PROPERTY OF AN IMPLANTABLE INTRAOCULAR LENS

    公开(公告)号:US20190307554A1

    公开(公告)日:2019-10-10

    申请号:US16375784

    申请日:2019-04-04

    IPC分类号: A61F2/16 B29D11/02

    摘要: A method of altering a refractive property of a crosslinked acrylic polymer material by irradiating the material with a high energy pulsed laser beam to change its refractive index. The method is used to alter the refractive property, and hence the optical power, of an implantable intraocular lens after implantation in the patient's eye. In some examples, the wavelength of the laser beam is in the far red and near IR range and the light is absorbed by the crosslinked acrylic polymer via two-photon absorption at high laser pulse energy. The method also includes designing laser beam scan patterns that compensate for effects of multiphone absorption such as a shift in the depth of the laser pulse absorption location, and compensate for effects caused by high laser pulse energy such as thermal lensing. The method can be used to form a Fresnel lens in the optical zone.