Abstract:
A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
Abstract:
An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
Abstract:
A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
Abstract:
A full depth ophthalmic surgical system includes a femtosecond laser source and an optical coherence tomographer. The system is capable of performing surgical procedures along the entire length of the eye from the cornea to the retina. In one embodiment, the system uses a removeable focal point extension assembly to extend the reach of the focal point location of the laser beam to the vitreous humor of the eye. In another embodiment, the optical system of the ophthalmic surgical system is optimized to focus the laser beam and imaging light in the vitreous humor of the eye. For procedures performed posterior to the lens, a method for calibrating the full depth ophthalmic surgical system uses the focal zone of the optical coherence tomographer beam as a proxy for the focal zone of the femtosecond laser source to. The system can be used to perform treatment in the vitreous humor, including treating floaters and liquification of the vitreous humor.
Abstract:
A method of altering a refractive property of a crosslinked acrylic polymer material by irradiating the material with a high energy pulsed laser beam to change its refractive index. The method is used to alter the refractive property, and hence the optical power, of an implantable intraocular lens after implantation in the patient's eye. In some examples, the wavelength of the laser beam is in the far red and near IR range and the light is absorbed by the crosslinked acrylic polymer via two-photon absorption at high laser pulse energy. The method also includes designing laser beam scan patterns that compensate for effects of multiphone absorption such as a shift in the depth of the laser pulse absorption location, and compensate for effects caused by high laser pulse energy such as thermal lensing. The method can be used to form a Fresnel lens in the optical zone.
Abstract:
A system and method for insetting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
Abstract:
An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
Abstract:
A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
Abstract:
One embodiment is directed to a patient interface system for ophthalmic intervention on an eye of a patient, comprising: a housing; an optical lens coupled to the housing and having a focal axis; a eye surface engagement assembly coupled to the housing and comprising an inner seal having an inner seal diameter and being configured to circumferentially engage the eye, an outer seal having an outer seal diameter and being configured to circumferentially engage the eye, and a tissue migration bolster structure configured to be positioned circumferentially between the inner and outer circumferential seals and to prevent migration of tissue of the eye toward the eye surface engagement assembly when a vacuum load is applied within the assembly to cause vacuum engagement of the inner and outer seals against the eye.
Abstract:
One embodiment is directed to a patient interface system for ophthalmic intervention on an eye of a patient, comprising: a housing; an optical lens coupled to the housing and having a focal axis; a eye surface engagement assembly coupled to the housing and comprising an inner seal having an inner seal diameter and being configured to circumferentially engage the eye, an outer seal having an outer seal diameter and being configured to circumferentially engage the eye, and a tissue migration bolster structure configured to be positioned circumferentially between the inner and outer circumferential seals and to prevent migration of tissue of the eye toward the eye surface engagement assembly when a vacuum load is applied within the assembly to cause vacuum engagement of the inner and outer seals against the eye.