Abstract:
Techniques are described herein for grouping of operations in local memory of a processing unit. The techniques involve adding a first operation for a first leaf operator of a query execution plan to a first pipelined group. The query execution plan includes a set of leaf operators and a set of non-leaf operators. Each leaf operator of the set of one or more leaf operators has a respective parent non-leaf operator and each non-leaf operator has one or more child operators from among the set of leaf operators or others of the set of non-leaf operators. The techniques further involve determining a memory requirement of executing the first operation for the first leaf operator and executing a second operation for the respective parent non-leaf operator of the first leaf operator. The output of the first operation is input to the second operation. The techniques further involve determining whether the memory requirement is satisfied by an amount of local memory. If it is determined that the memory requirement is satisfied by the amount of local memory the second operation for the respective parent non-leaf operator is added to the first pipelined group. The techniques further involve assigning the first pipelined group to a first thread and the first thread executing the first pipelined group. Executing the first pipelined group involves: storing first output of the first operation in the local memory of the first thread; using the first output as input for the second operation; storing second output of the second operation in the local memory; and moving second output from the local memory to a tier of memory different than the local memory relative to the first thread.
Abstract:
A flexible and extensible architecture allows for secure searching across an enterprise. Such an architecture can provide a simple Internet-like search experience to users searching secure content inside (and outside) the enterprise. The architecture allows for the crawling and searching of a variety of sources across an enterprise, regardless of whether any of these sources conform to a conventional user role model. The architecture further allows for security attributes to be received at query time, for example, in order to provide real-time secure access to enterprise resources. The user query also can be transformed to provide for dynamic querying that provides for a more current result list than can be obtained for static queries.
Abstract:
A method of implementing a universal framework for searching across multiple search platforms in a secure federated search. The method includes receiving, at a federated broker, a query from an authorized user, obtaining a plurality of user credentials associated with the authenticated user, wherein each of the plurality of user credentials are used to access at least one source of a plurality of sources, determining a required query format for each of the plurality of sources, translating the query into a plurality of queries formatted according to the required query format of each of the plurality of sources, propagating the plurality of translated queries and the plurality of user credentials to each corresponding source to appear to each corresponding source to be the authorized user, receiving, at the federated broker, results of each of the plurality of queries from each source of the plurality of sources, and consolidating the results of each of the plurality of queries to be displayed in a uniform manner.
Abstract:
A flexible and extensible architecture allows for secure searching across an enterprise. Such an architecture can provide a simple Internet-like search experience to users searching secure content inside (and outside) the enterprise. The architecture allows for the crawling and searching of a variety of sources across an enterprise, regardless of whether any of these sources conform to a conventional user role model. The architecture further allows for security attributes to be received at query time, for example, in order to provide real-time secure access to enterprise resources. The user query also can be transformed to provide for dynamic querying that provides for a more current result list than can be obtained for static queries.
Abstract:
A flexible and extensible architecture allows for secure searching across an enterprise. Such an architecture can provide a simple Internet-like search experience to users searching secure content inside (and outside) the enterprise. The architecture allows for the crawling and searching of a variety of sources across an enterprise, regardless of whether any of these sources conform to a conventional user role model. The architecture further allows for security attributes to be received at query time, for example, in order to provide real-time secure access to enterprise resources. The user query also can be transformed to provide for dynamic querying that provides for a more current result list than can be obtained for static queries.
Abstract:
A flexible and extensible architecture allows for secure searching across an enterprise. Such an architecture can provide a simple Internet-like search experience to users searching secure content inside (and outside) the enterprise. The architecture allows for the crawling and searching of a variety of sources across an enterprise, regardless of whether any of these sources conform to a conventional user role model. The architecture further allows for security attributes to be received at query time, for example, in order to provide real-time secure access to enterprise resources. The user query also can be transformed to provide for dynamic querying that provides for a more current result list than can be obtained for static queries.
Abstract:
A flexible and extensible architecture allows for secure searching across an enterprise. Such an architecture can provide a simple Internet-like search experience to users searching secure content inside (and outside) the enterprise. The architecture allows for the crawling and searching of a variety of sources across an enterprise, regardless of whether any of these sources conform to a conventional user role model. The architecture further allows for security attributes to be received at query time, for example, in order to provide real-time secure access to enterprise resources. The user query also can be transformed to provide for dynamic querying that provides for a more current result list than can be obtained for static queries.
Abstract:
A flexible and extensible architecture allows for secure searching across an enterprise. Such an architecture can provide a simple Internet-like search experience to users searching secure content inside (and outside) the enterprise. The architecture allows for the crawling and searching of a variety or of sources across an enterprise, regardless of whether any of these sources conform to a conventional user role model. The architecture further allows for security attributes to be submitted at query time, for example, in order to provide real-time secure access to enterprise resources. The user query also can be transformed to provide for dynamic querying that provides for a more current result list than can be obtained for static queries.
Abstract:
Techniques are described herein for grouping of operations in local memory of a processing unit. The techniques involve adding a first operation for a first leaf operator of a query execution plan to a first pipelined group. The query execution plan includes a set of leaf operators and a set of non-leaf operators. Each leaf operator of the set of one or more leaf operators has a respective parent non-leaf operator and each non-leaf operator has one or more child operators from among the set of leaf operators or others of the set of non-leaf operators. The techniques further involve determining a memory requirement of executing the first operation for the first leaf operator and executing a second operation for the respective parent non-leaf operator of the first leaf operator. The output of the first operation is input to the second operation. The techniques further involve determining whether the memory requirement is satisfied by an amount of local memory. If it is determined that the memory requirement is satisfied by the amount of local memory the second operation for the respective parent non-leaf operator is added to the first pipelined group. The techniques further involve assigning the first pipelined group to a first thread and the first thread executing the first pipelined group. Executing the first pipelined group involves: storing first output of the first operation in the local memory of the first thread; using the first output as input for the second operation; storing second output of the second operation in the local memory; and moving second output from the local memory to a tier of memory different than the local memory relative to the first thread.
Abstract:
A flexible and extensible architecture allows for secure searching across an enterprise. Such an architecture can provide a simple Internet-like search experience to users searching secure content inside (and outside) the enterprise. The architecture allows for the crawling and searching of a variety of sources across an enterprise, regardless of whether any of these sources conform to a conventional user role model. The architecture further allows for security attributes to be received at query time, for example, in order to provide real-time secure access to enterprise resources. The user query also can be transformed to provide for dynamic querying that provides for a more current result list than can be obtained for static queries.