Abstract:
A method can be used for operating an organic light-emitting component. The organic light-emitting component has a first electrode and a second electrode, between which an organic functional layer stack with at least one organic light-emitting layer is arranged. The first and second electrodes and the organic functional layer stack have a large area. Electrical contact is made with the first electrode via at least two electrical connection elements in the peripheral regions, in which different electric voltages are applied to the at least two electrical connection elements and the different electric voltages vary over time. A lighting device for implementing the method is also specified.
Abstract:
An organic light-emitting diode is disclosed. In an embodiment, the diode includes a first light-emitting segment and at least a second light-emitting segment, wherein the first and second light-emitting segments include a common first electrode and a common second electrode, and are configured to emit radiation with different brightnesses, wherein the first electrode includes at least one separating line that does not completely cut through the first electrode, wherein an electric conductivity of the first electrode is reduced in a region of the separating line, wherein the separating line separates the first light-emitting segment from the second light-emitting segment, and wherein the second light-emitting segment has a lower brightness during operation than the first light-emitting segment.
Abstract:
In at least one embodiment, a light panel system includes a system carrier with a carrier front face. Multiple organic light emitting diodes are arranged in a uniform grid on the carrier front face. An electronics driver is fitted to or in the system carrier. The light panel system can be handled and mounted as a single unit.
Abstract:
An organic light-emitting diode is disclosed. In an embodiment, the diode includes a first light-emitting segment and at least a second light-emitting segment, wherein the first and second light-emitting segments include a common first electrode and a common second electrode, and are configured to emit radiation with different brightnesses, wherein the first electrode includes at least one separating line that does not completely cut through the first electrode, wherein an electric conductivity of the first electrode is reduced in a region of the separating line, wherein the separating line separates the first light-emitting segment from the second light-emitting segment, and wherein the second light-emitting segment has a lower brightness during operation than the first light-emitting segment.
Abstract:
A method can be used for operating an organic light-emitting component. The organic light-emitting component has a first electrode and a second electrode, between which an organic functional layer stack with at least one organic light-emitting layer is arranged. The first and second electrodes and the organic functional layer stack have a large area. Electrical contact is made with the first electrode via at least two electrical connection elements in the peripheral regions, in which different electric voltages are applied to the at least two electrical connection elements and the different electric voltages vary over time. A lighting device for implementing the method is also specified.