Abstract:
Method for introducing a limited amount of mercury into a fluorescent lamp during manufacture thereof includes the steps of forming the lamp with an exhaust tubulation therein open at an end thereof and provided with a ball retention structure, exhausting the interior of the lamp through the tubulation open end, placing a rigid ball of inert material in the tubulation between the ball retention structure and the tubulation open end, the ball having a coating of a selected one of silver, gold, and indium, of a selected mass over a selected surface area of the ball, and mercury on the coated area, and sealing the open end of the tubulation, whereby the amount of mercury retained on the ball and thereby introduced into the lamp is limited by the selected mass of the coating on the ball.
Abstract:
Method for introducing a limited amount of mercury into a fluorescent lamp during manufacture thereof includes the steps of forming the lamp with an exhaust tubulation therein open at an end thereof, exhausting the interior of the lamp through the exhaust tubulation, placing a body of metal material not reactive with mercury in the exhaust tubulation open end, the body having a coating of metal which amalgams with mercury, over a selected surface area of the body, and having mercury on the coated area of the body, such that a limited amount of the mercury is retained by the metal coating, and sealing the open end of the exhaust tubulation, whereby the amount of mercury retained on the body and introduced into the lamp is limited by the surface area of the metal coating on the body.
Abstract:
An amalgam assembly for a fluorescent lamp includes a glass exhaust tubulation extending from an envelope portion of the lamp toward a base portion of the lamp, the tubulation being closed at an end adjacent the lamp base portion, and a glass body disposed in the tubulation and retained by a pinched portion of the tubulation, the glass body being disposed between the pinched portion and the closed end of the tubulation. A mercury amalgam body is disposed between the glass body and the closed end of the tubulation. A mercury wetting metallic layer is disposed on a selected one of (i) an inside surface of the tubulation between the pinched portion and the closed end of the tubulation, and (ii) a surface of the glass body whereby to a wet at least one of (i) the interior surface of the glass tubulation and (ii) the surface of the glass body, to prevent the amalgam, when liquidized, from flowing past the tubulation pinched portion and into the lamp envelope.